
Trajectory Optimization
Chenggang Liu

Contents

Control vs. Planning
Control and planning are the two ends of a continuous spectrum. Control
is more in a real-time and close-loop fashion while planning is more in
an offline and open-loop fashion. There is no clear boundary between
control and planning, for example, we can apply a control law and simulate
forwards in time to make a open-loop long-term plan or we can apply a
open-loop plan in an iterative fashion online to get a close-loop control,
such as Model Predictive Control (MPC).

With the development of computer speed, open-loop planning methods,
specifically trajectory optimization methods, become popular in real-time
control and attract a lot of attention.

Optimal control problem
Continuous-time optimal control problem

• Functional forms:

– Lagrange Formulation

J(u(·), tf) =
∫ tf

t0

L(x,u, t)dt (1)

– Bolza Formulation

J(u(·), tf) = ϕ(x(tf), tf) +

∫ tf

t0

L(x,u, t)dt (2)

s.t.
ẋ = f(x,u, t), (3)

and the boundary conditions

x(t0) = x0, ψ(xf , tf) = 0 (4)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control, t is the
independent variable (generally speaking, time), t0 is the initial
time, and tf is the terminal time. The terms ϕ and L are called
the terminal penalty term and Lagrangian, respectively.

– Mayer Formulation In the Mayer formulation, the state vector
is extended by: xn+1(t).

xn+1(t) =

∫ t

t0

L(x,u, t)dt. (5)

Then the objective is to choose u(t) to minimize

J(u(·), tf) = ϕ(x(tf), tf) (6)

s.t.
ẋ =

[
f(x,u, t)
l(x,u, t)

]
(7)

and the boundary conditions

x(t0) =

[
x0

0

]
(8)

ψ(xf , tf) = 0

1

Mayer formulation and Bolza formulation are equivalent, but Mayer
form yield a simpler expression.
Lagrange, Bolza, and Mayer forms are equivalent. In particular, there
are constraints on the state of the form

S(x(t)) ≤ 0 (9)

and on the control variable

C(x(t),u(t)) ≤ 0 (10)

The optimal control can be derived using Pontryagin’s maximum
principle (a necessary condition), or by solving the Hamilton-Jacobi-
Bellman equation (a necessary and sufficient condition).

Discrete-time optimal control problem
The discrete-time optimal control problem:

Jk(xk) = min
uk∈U

{ϕ(xN) +

N−1∑
k=0

Lk(xk, uk)}

s.t.
xk+1 = F (xk, uk, k)

Continuous DDP (Differential Dynamic Pro-
gramming)
Calculus of Variation
In optimal control, we are trying to solve:

u = argmin
u
J = ψ(x(tf)) +

∫ tf

t0

L(x(t), u(t), t)dt

s.t.
ẋ(t) = f(x(t), u(t), t)

x(t0) = x0

The total cost J is a sum of the terminal cost and an integral along the
way. The total cost J is also called performance index.

Using Lagrange method to augment the cost:

J̄ = L+ λ⊤(f − ẋ)

Assuming J is chosen to be continuous in x, u, and t, we write the
variation as 1:

δJ̄ = ψxδx(tf) +

∫ tf

t0

[Lxδx+ Luδu+ λ⊤fxδx+ λ⊤fuδu− λ⊤δ(̇x)]dt

where subscripts denote partial derivatives.
The last term:

−
∫ tf

t0

λ⊤δẋdt = −λ⊤δx|tft0 +

∫ tf

t0

λ̇δxdt

and thus

δJ̄ = [ψx(x(tf))− λ(tf)⊤]δx(tf) + λ(t0)
⊤δx(t0)+∫ tf

t0

(Hx + λ̇⊤)δxdt+

∫ tf

t0

Huδudt (11)

where H = L+ λ⊤f and is called Hamiltonian 2.
To extreme Eq. 11, there are three components of variation that must

independently be zero since we can vary any of δx, δu, or x(tf):

Lx + λ⊤fx + λ̇⊤ = 0

Lu + λ⊤fu = 0

ψx(x(tf))− λ⊤(tf) = 0

1Here we are assuming the augmented Lagrangian is differentiable. In fact, it is quite
often for problems with bounded controls and terminal cost to have nondifferentiable
optimal cost-to-go functions.

2Recall that we can get Hamiltonian from Lagrangian by calculating the momenta by
differentiating the augmented Lagrangian with respect to the ’velocity’, ẋ, as p = ∂L

∂q̇
.

Then the Hamiltonian is then given by H = pq̇ − L. As we can see that the Lagrange
multiplier λ in Eq. 11 is actually the ’momenta’, but with an opposite sign. This gives
us an interesting insight into the optimal control problem.

2

The evolution of λ is given in reverse time, from the final state to the
initial. This is the primary difficulty of solving optimal control problems.

Finally, we have the following equations that extreme the our objective
function:

ẋ = f(x(t), u(t), t) (12)
λ̇ = −L⊤

x − f⊤x λ (13)
Lu + λ⊤fu = 0 (14)

s.t.
x(t0) = x0

λ⊤(tf) = ψx(x(tf))

Note:

• δx(t0) = 0 if the initial state is fixed.

• The function L + λ⊤f is called Hamiltonian 3. It is counterpart in
discrete time is the Bellmen equation.

• If H is not differentiable w.r.t. u, then u can still be derived using
the Pontryagin Maximum Principle:

u = argmin
u
H(x, u, t, λ)

• The Lagrange multiplier is often called co-state.

• If we replace u in Eqs. 12 and 13 with the solution of the optimal
control, then Eqs. 12 and 13 become equations only of x and λ, which
are often called Hamiltonian Differential Equations.

• Denote V as the value function, then V ⊤
x is a solution of λ.

Gradient method
Gradient method is outlined as follows:

1. For a given x0, pick a control history u(t).

2. Solve ODE forwards in time to get state history:
Propagate ẋ = f(x(t), u(t), t) forward in time to create a state history

3’Cool things in Physics and optimization’ Link

3. Solve ODE backwards in time to get co-state history:
Evaluate ψx(x(tf)), and propagate the co-state backwards in time
from tf to t0

4. At each time step, minimize the Hamiltonian by:

• choosing δu = −ϵHu, where ϵ ∈ (0, 1]

• update u = u+ δu

5. If J i+1 < J i, go back to step 2 with i = i+ 1. Otherwise, reduce the
step size ϵ and repeat 4 (backtracking line search).

6. Exit if the early exit conditions are satisfied.

Newton-Raphson method (successive sweep method)
Newton-Raphson method uses second order variation to minimize the
Hamiltonian, H = L+ λ⊤f .

LATEX

H(x+ δx, u+ δu, t+ dt) =
1

2

 1
δx
δu

⊤  2H Hx Hu

H⊤
x Hxx Hxu

H⊤
u Hux Huu

 1
δx
δu

+Htdt

(15)

The Newton step of δu is given by:

δu = argmin
δu

δH (16)

= −H−1
uuHu −H−1

uuHuxδx (17)

Compared with gradient method, there is an additional term of
−H−1

uuHuxδx, which means λ is changed because δu depends on δx.

λ̇⊤ = −Hx −Huux = −Hx +HuH
−1
uuHux (18)

λ̇x
⊤
= −Hxx −Huxux = −Hxx +HuxH

−1
uuHux (19)

Hu = Lu + λfu (20)
Hux = Lux + λxfu + λfux (21)
Huu = Luu + λfux (22)

3

https://cgliu.github.io/posts/optimization-physics.pdf

Newton’s method is outlined as follows:

1. For a given x0, pick a control history u(t).

2. For iteration i, solve ODE forwards in time to get state history x(t)i:
Propagate ẋ = f(x(t), u(t), t) forwards in time to create a state his-
tory

3. Solve ODE backwards in time to get co-state history λ(t)i:
Evaluate ψx(x(tf)) and ψxx(x(tf)), and propagate λ(t) and λx(t)
backwards in time from tf to t0

4. At each time step, minimize the Hamiltonian by:
ui+1 = ui − ϵH−1

uuHu −H−1
uuHuxδx

5. If J i+1 < J i, go back to step 2 with i = i+ 1. Otherwise, reduce the
step size ϵ and repeat step 4 (backtracking line search).

Note:

• If the system dynamics is linear and the cost function is quadratic,
one step convergence can be achieved with ϵ = 1

Control parameters
Control parameters are constant variables in the optimal control problem
structure, for example: L(x, u, α, t). According to the maximum principle:
LATEX

H(x+ δx, α+ δα, u+ δu, , t) =
1

2


1
δx
δα
δu


⊤ 

2H Hx Hα Hu

H⊤
x Hxx Hxα Hxu

H⊤
α Hαx Hαα Hαu

H⊤
u Hux Huα Huu



1
δx
δα
δu



Thus, we have:

δu = −H−1
uuHu −H−1

uuHuxδx−H−1
uuHuαδα

when it converge, Hu = 0 and:

u∗x = −H−1
uuHux

and
u∗α = −H−1

uuHuα

As you can see, α has similar coefficient as the sate variable. We can
actually take α as a state variable and then solve it in the same way: define
v = [x⊤, α⊤]⊤, the dynamics: LATEX

v̇ =

[
f(v, u, t)

0

]
(23)

Discrete DDP
Discrete time optimal control is to find a control sequence that:

u(0, . . . , N − 1) = argmin
u
ϕ(xN) +

N−1∑
i=k

a
(
L(xi, ui, i) + V (xi+1, i+ 1)

)
s.t.

xk+1 = F (xk, uk, k)

x(0) = x0

Define an optimal cost-to-go function (value function) as:

V (xk, k) = min
u

N−1∑
i=k

(
L(xi, ui, i) + V (xi+1, i+ 1)

)
+ ϕ(x(N))

and a Q function:

Q(xk, uk, k) = L(xk, uk, k) + V (xk+1, k + 1)

The optimal control at time k is given by:

u∗(k) = argmin
u(k)

Q(xk, uk, k)

Second order expansion:

Q(xk + δx, uk + δu) =
1

2

 1
δxk
δuk

⊤ 2Q Qx Qu

Q⊤
x Qxx Qxu

Q⊤
u Qux Quu

 1
δxk
δuk

 (24)

4

The Newton step of u at time k is given by:

δu = −Q−1
uuQ

⊤
u −Q−1

uuQuxδx

For Q approximation:

Qx(k) = Lx(k) + Vx(k + 1)Fx(k)

Qu(k) = Lu(k) + Vx(k + 1)Fu(k)

Qxx(k) = Lxx(k) + Fx(k)
⊤Vxx(k + 1)Fx(k) + Vx(k + 1)Fxx(k)

Qxu(k) = Lxu(k) + Fu(k)
⊤Vxx(k + 1)Fx(k) + Vx(k + 1)Fxu(k)

Qux(k) = Lux(k) + Fx(k)
⊤Vxx(k + 1)Fu(k) + Vx(k + 1)Fux(k)

Quu(k) = Luu(k) + Fu(k)
⊤Vxx(k + 1)Fu(k) + Vx(k + 1)Fuu(k)

The value function (optimal cost to go) is the Q function when the
control is optimal. Therefore, the value function approximation is given
by:

V (k) = Q(k)−QuQ
−1
uuQ

⊤
u

Vx(k) = Qx(k)−Qu(k)Q
−1
uu (k)Qux(k)

Vxx(k) = Qxx(k)−Qxu(k)Q
−1
uu (k)Qux(k)

The terminal conditions are:

Vx(N) = ϕx(N)

Vxx(N) = ϕxx(N)

iLQR
The iLQR is a special form of DDP that it uses first order approximation
of the system dynamics.

Problem definition and notations
Problem:

u(0, . . . , N − 1) = argmin
u

N−1∑
k=0

L(xk, uk, k) + ϕ(xN)

s.t.
xk+1 = F (xk, uk, k) (25)

The first order approximation of the dynamics is given by:

x(k + 1) = Fxδx(k) + Fuδu(k) + F (xk, uk, k)

Define a vector as v := [1 δx⊤ δu⊤]⊤.
The second order expansion of the cost function:

L(x, u, k) := v⊤

 L L⊤
x L⊤

u

Lx Lxx Lxu

Lu Lux Luu

 v (26)

Define Z(x(k), u(k), k) := L(x(k), u(k), k)+V (x(k+1), k+1), which is
often called Q function. The second order approximation of the Q function
is given by:

Z(xk, uk, k) =
1

2

 1
δx
δu

⊤  2Z Z⊤
x Z⊤

u

Zx Zxx Zxu

Zu Zux Zuu

 1
δx
δu

 (27)

For the shake of simplicity, let us denote the hessian matrix as: 2Z Z⊤
x Z⊤

u

Zx Zxx Zxu

Zu Zux Zuu

 =

[
Z11 Z12

Z21 Z22

]
(28)

where Z11 ∈ R(1+N)×(1+N), Z12 ∈ R(1+N)×M , Z21 ∈ RM×(1+N) and
Z22 ∈ RM×M

Then the optimal control taken a Newton step is given by:

u∗(k) = u(k)− αk −Kδx(k)

where
[k|K] = −Z−1

22 (k)Z21(k) ∈ RM×(1+N)

The value function is the Q function when the control is optimal. Its
second order approximation is thus given by4:

V (x, k) =

[
1
δx

]⊤
(Z11(k)− Z12(k)Z

−1
22 (k)Z21(k))

[
1
δx

]
(29)

4This is not a ’real’ value function since we haven’t found the optimal trajectory yet.
However, this is the best one that we can get.

5

To make it symmetric,

V = 0.5(V ⊤ + V)

For convenience, let’s define a dynamics Jacobian as:

D :=

[
1 0 0
0 F⊤

x F⊤
u

]
(30)

The the chain rule for Q function update is given by:

Z(k) = L+D⊤V (k + 1)D (31)

where
V (N) = ϕ(xN , N)

Vx(N) = ϕx(xN , N)

Vxx(N) = ϕxx(xN , N)

The algorithm
The iLQR is outlined as follows:

1. For a given x0, pick a control history u(0, . . . , N − 1)

2. Simulate forwards in time to get the state history, x(0, . . . , N), ac-
cording to the system dynamics of Eq. 25

3. Simulate backwards in time to update the Q history, Z(N, . . . , 0),
according to Eqs. 29, 30 and 31.

4. if the initial state is open, δx(0) = V −1
xx (0)Vx(0). Otherwise, δx(0) =

0. recorder the current cost as J0 and its maximum possible decrease
as:

∆J = V (0)− J0

5. early stop:

• if ∆J > 0, return ERROR.
• else if ∆J > −abs_tols or |∆J/J0| < rel_tol, return SUCCESS
• if exceed iteration number, return WARNING

6. Backtracking line search5:

(a) Start with α = 1.0 and iteration number i as 1
(b) Simulate forwards in time to get the state and control history.

x(0)← x(0)− αδx(0)

u(k)← u(k)− αk −Kδx(k)

(c) Evaluate the resultant trajectory and denote its cost as J i.
(d) if J i < J0 − α ∗ c ∗ |∆J |, where c ∈ (0, 0.5) is the Armijo factor

(typically c = 0.25), then return SUCCESS. Otherwise, α← τα,
where τ ∈ (0, 1) is the backtracking parameter, and repeat b).
If i > imax or α becomes zero, return ERROR.

Continuous LQR (Linear Quadratic Regula-
tor)
Finite horizon LQR
For finite horizon LQR, we are solving:

u(t) = argmin
u
x⊤f Q(tf)xf +

∫ tf

t0

1

2
x⊤(t)Q(t)x(t) +

1

2
u⊤(t)R(t)u(t)

s.t.
ẋ(t) = A(t)x(t) +B(t)u(t)

The Hamiltonian:

H =
1

2
x⊤Qx+

1

2
u⊤Ru+ λ⊤(Ax+Bu)

The optimal control is given by:

Hu = 0

then we have:
u∗ = −R−1B⊤λ

5: Refer to https://en.wikipedia.org/wiki/Backtracking_line_search

6

https://en.wikipedia.org/wiki/Backtracking_line_search

For the co-state:
λ̇ = −H⊤

x = −Qx−A⊤λ

Using the optimal control, the system dynamics with co-state can be
written as:

d

dt

[
x
λ

]
=

[
A(t) −B(t)R−1(t)B⊤(t)
−Q(t) −A⊤(t)

] [
x
λ

]
(32)

Note:

• Eq. 32 is called Hamiltonian DE.

• The 2n× 2n matrix is called Hamiltonian for the problem.

• with conditions: x(0) = x0 and λ(tf) = Qfx(tf), the problem is a
Two-Point Boundary Value problem.

Since λ(tf) = Qfx(tf), let’s try a connection λ = P (t)x(t), we have:

− Ṗ = P (t)A(t) +A(t)⊤P (t) +Q(t)− P (t)B(t)R−1(t)B(t)⊤P (t) (33)

s.t.
P (tf) = Qf

Note:

• Eq. 33 is Riccati differential equation.

• It can be derived by Eq. 19.

• we can integrate backwards in time to get P (t) and then get optimal
control:

u∗ = −R−1(t)B⊤(t)P (t)x(t)

Infinite horizon LQR
For finite horizon LQR, we are solving:

min
u

∫ ∞

0

1

2
x⊤(t)Qx(t) +

1

2
u⊤(t)Ru(t)

s.t.
ẋ(t) = Ax(t) +Bu(t)

P is found by solving the continuous time algebraic Riccati equation:

0 = PA+A⊤P +Q− PBR−1B⊤P

The optimal control is given by:

u = −R−1B⊤Px

Discrete LQR

For discrete time LQR, we are interested in the following problem:

u(0, . . . , N − 1) = argmin
u

N−1∑
k=0

1

2
x⊤k Qkxk +

1

2
u⊤k Rkuk + x⊤NPNxN

s.t.

xk+1 = Akxk +Bkuk

x0 = x(0)

We can derive discrete time LQR using the results of discrete time DDP,
where Lx(k) = x⊤Q, Lu = u⊤R, Lxx = Q, Luu = Q, Fx = A, Fu = B.

Backpropagate as a network

The following diagram best describes the nature of the optimal control
problem, which is a Two-point Boundary Value Problem, where the initial
state and the final co-state are defined 6.

6Efficient robust policy optimization, American Control Conference (ACC), 2012,
Christopher G. Atkeson, Robotics Institute, Carnegie Mellon University, 5000 Forbes
Avenue, Pittsburgh, PA, USA

7

Note: There is a connection between π and v(k+1), which is not shown
in the original paper, because:

π(xk) = argmin
uk

L(xk, uk, k) + V (xk+1, k + 1)

Numerical Integration
The model ODE
The first order ODE:

dy

dt
= f(t, y)

where y ∈ RN . It is interesting because high order ODEs can be written
in form of a system of first order ODEs.

Euler method
• forward Euler:

yk+1 = yk +∆Tf(y(k))

• backward Euler:

yk+1 = yk +∆Tf(y(k + 1))

The forward Euler is also called explicit method because you can eval-
uate the next time step by an explicit equation. It is simple but less
stable.

The backward Euler is also called implicit method because you have to
solve nonlinear equations to get the next step. It is more complicate by
more stable 7.

Runge-Kutta methods
The Runge-Katta methods are the most popular methods of solving ODE
numerically. They can be derived for any order of accuracy. The most
popular method is the fourth order Runge-Kutta method, or RK4 method,
which is given by

yk+1 = yk +
1

6
(k1 + 2K2 + 2K3 + k4), (34)

k1 = hf(tk, yk) (35)

k2 = hf(tk +
h

2
, yk +

1

2
k1) (36)

K3 = hf(tk +
h

2
, yk +

1

2
k2) (37)

k4 = hf(tk + h, yk + k3) (38)

Quadrature
Quadrature is more or less a a synonym for numerical integration, es-
pecially as applied to one-dimensional integrals. Some authors refer to
numerical integration over more than one dimension as cubature; others
take quadrature to include higher-dimensional integration.∫ b

a

f(y)dt ≈
N∑
i=1

wif(ti)

where wi are the quadrature weights and ti are the quadrature points or
nodes.

An interpolatory quadrature formula can be created for arbitrary sup-
port points by approximating the integrand by Lagrange polynomials, so
that ∫ b

a

f(y)dt ≈
∫ b

a

N∑
i=1

Li(t) · f(ti)dt

7https://web.stanford.edu/~fringer/teaching/numerical_methods_02/
handouts/lecture7.pdf

8

https://web.stanford.edu/~fringer/teaching/numerical_methods_02/handouts/lecture7.pdf
https://web.stanford.edu/~fringer/teaching/numerical_methods_02/handouts/lecture7.pdf

The quadrature weights can be easily determined as

wi =

∫ b

a

Li(t)dt

The quadrature formula with the maximum degree of precision is the
Gauss quadrature formula, which is exact for polynomials of degree
2N−1 or less. The Gauss formula is found by choosing the weights wi and
points ti which make the formula exact for the highest degree polynomial
possible. The points and weights are determined so that∫ 1

−1

f(t)dt =

N∑
i=1

wi · f(ti) + EN

and the error EN is zero for a polynomial of degree 2N − 1. The Gauss
points are determined as the zeros of the N th degree Legendre polynomial
and the weights are the integrals of the resulting Lagrange interpolating
polynomials, so that

wi =

∫ 1

−1

N∏
k=1,k ̸=i

t− tk
ti − tk

dt, i = 1, . . . , N

There are other types of quadrature formula, such LGL, which is similar
to the Gauss formula, except the boundary points are fixed at -1 and 1.

The error in the pesudospectral integration at the ith point is bounded
by

∥Ei∥ ≤ ∥
dNf(ξ)

dtN
∥ 2

N !
, ξ ∈ [−1, 1]

and the pseudospectral integral will converge for any f(t) whose deriva-
tives are bounded, as the number of nodes used approaches infinity 8.

Solve ODEs backwards in time
Having a dynamics equation, it seems normal to integrate forward to get
the time history. Backward ODE sounds odd because how can you inte-
grate a dynamic system backward in time. But actually, it is still normal

8A Gauss Pseudospectral Transcription for Optimal Control by David Benson, MIT,
2005

in math. We can still use Runge-Kutta to integrate ODEs backward in
time using a negative time step!

yk−1 = yk +
1

6
(k1 + 2K2 + 2K3 + k4), (39)

k1 = hf(tk, yk) (40)

k2 = hf(tk −
h

2
, yk −

1

2
k1) (41)

K3 = hf(tk −
h

2
, yk −

1

2
k2) (42)

k4 = hf(tk − h, yk − k3) (43)

Figure 1: Comparison between solving ODEs forwards and backwards in
time

Code

Lagrange interpolation
Given N arbitrary support points of the function f(t), on interval t ∈ [a, b],
there exists a unique polynomial P(t), of degree N-1 so that

P (ti) = fi, i = 1, . . . , N

9

https://github.com/cgliu/optimal_control/blob/master/tests/ode_forwards_backwards.py

The unique polynomial can be found using Lagrange interpolation for-
mula so that

P (t) =

N∑
i=1

fiLi(t)

where Li(t) are the Lagrange interpolation polynomials

Li(t) =

N∏
k=1,k ̸=i

t− tk
ti − tk

dt, i = 1, . . . , N

Spectral method for ODE and PDE
• Galerkin, tau method

• Pseudospectral method, or collocation method satisfy boundary con-
straints and collocation points

Direct transcription
Take the state and the control at collocation points as optimization vari-
ables

Euler method
Runge-Kutta method
Lagrange Pseudospectral method
it is outlined as:

• Lagrange interpolation + Gauss quadrature

• the state and control are interpolated using Lagrange interpolation
at N LGL points

• the dynamics constraints are enforced at the LGL points

• boundary constraints are enforced using the boundary points of ap-
proximating polynomial

• the integration in the cost function is discretized using GL quadrature
rule

problems:

• the cost is evaluated only at the collocation points, which in general
is sparse. It may miss some important details in the cost functions.
more details here

Gauss Pseudospectral method
outlined as:

• convert to Bolza formulation use Lagrange interpolation + Gauss
quadrature

• integration approximation matrix

10

