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1 Introduction
This note is intended to be a reference for personal learning and imple-
mentation. It covers literatures on path integral method, optimal control
(reinforcement learning) as a probabilistic inference.

2 Linear solvable Markov decision problems
[Todorov, 2006] studies a class of MDP problems:

• The controlled transition probabilities

pij(u) = p̄ijexp(uj)

• The one step cost

l(i, u) = q(i) + r(i, u)

= q(i) + KL(pi(u)||p̄i)

• Bellman equation

v(i) = min
u∈U
{l(i, u) +

∑
j

pijv(j)}
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2.1 Important conclusions

• Optimally-controlled transition probabilities:

p∗ij =
p̄ijz(j)∑
k p̄ikz(k)

where z := exp(−v(i)) is celled ’state desirability’.

• z can be obtained by solving a linear Eigenvalue problem:

z = GP̄z

• Z-learning
ẑ(ik)← (1− α)ẑ(ik) + αke

−qk ẑ(jk)

2.2 Experiments

• Shortest-path problem https://youtu.be/N0SQHOqbYLw

• Z-learning https://youtu.be/KyqfCMNdO2s

• Source code https://github.com/cgliu/z-learning.git

3 Linear theory for control of non-linear stochas-
tic systems

How to solve optimal deterministic control problems in the absence of noise:

• PMP: Pontryagin Minimization Principle

• HJB: Hamilton-Jacobi-Bellman equation

How to solve optimal stochastic control problems in the presence of noise:

• PMP: difficult to solve

• Stochastic HJB: the curse of dimensionality

[Kappen, 2005] studied a restrict class of optimal stochastic control prob-
lem.
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• Dynamics
dx = (b(x, t) + u)dt+ dw

where dw is a Wiener process with < dwi, dwj >= vijdt and νij is
independent of x, u, and t.

• Minimize the following cost function:

C(x, u, t) = E[φ(x(tf ) +

∫ tf

t

[
dτ

1

2
u>Ru+ q(x, τ)

]
where q(x, t) is a state dependent potential function.

• Important conclusions:

ψ(x0, t) =

∫
[dξ]x0

(
− 1

λ
S(ξ)

)
where V (x, t) = − logψ(x, t),

∫
[dx]x0 means an integral over all paths

x that state at x0 and

S(ξ) = φ(xf ) +

∫ tf

t

dτ
(1

2
u>Ru+ q(x, τ)

)
Note:

• I have changed the symbols to be more consistent with other papers.

• The dynamics is fully actuated, where all state variables can be changed
by u or the noise. [Theodorou et al., 2010] extended the dynamics,
which can be under-actuated and only controlled states have noise.

4 Path Integral for robot control
Path integral method was further developed by [Theodorou et al., 2010],
which studies a class of stochastic optimal control problem, where

• System dynamics:

ẋ = f(x, t) +G(x)(u+ ε) (1)

where ε is Gaussian noise with variance Σε.

Note:

3



– The noise term has to be in the control or the directly controlled
state, otherwise, the method doesn’t apply.

– It is sometime referred as ’linear in control’.

• Immediate cost function:

rt(x, u) = qt(x) +
1

2
u>Ru (2)

Note:

– The immediate cost can be split into a state cost and a control
dependent cost.

– It is sometimes referred as ’quadratic’.

• Finite horizon cost function:

R(τ) = Φ(tN) +

∫ tN

ti

rtdt

where Φ is the terminal cost function.

• Value function
V (xti) = min

ut
Eτ [R(τ)]

the expectation of is taken over all possible trajectories, τ , starting at
xti

• The stochastic HJB equation is:

∂tVt = min
u

(
rt + (∇xVt)

>(f +Gu) +
1

2
Tr(∇xxVt)GtΣεG

>
t )
)

(3)

which is a diffusion process.

• The Hamiltonian for the stochastic process:

H := rt + (∇xVt)
>(f +Gu) +

1

2
Tr(∇xxVt)GtΣεG

>
t )

compared with deterministic process, the difference is the red term,
which is from the noise.
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– The optimal control u∗ is given by (set the gradient of Hamiltonian
w.r.t. control to zero):

u∗ = −R−1G>t (∇xVt)

substitute it into the stochastic HJB Eq. (3), and then use an
exponential transformation:

Vt = −λ log Ψt

where λ is a scalar.
Furthermore, set R to be inverse proportional to the noise variance
as λR−1 = Σε, so that

λGtR
−1G> = GtΣεG

>
t = Σ(xt) := Σt

we get

−∂tΨt = −1

λ
qtΨt + f>(∇xΨt) +

1

2
Tr
(
(∇xxΨt)GtΣεG

>
t

)
with boundary condition: ΨtN = exp(− 1

λ
ΦN). This partial dif-

ferential equation (PDE) corresponds to so called Chapman Kol-
mogorov PDE. One step further, we can apply Feynman-Kac the-
orem to get one of the major conclusion:

Ψti = Eτi
[

exp(−
ΦN +

∫ tN
ti
qtdt

λ
)
]

(4)

where τi := (xti , . . . , xtN ) is a sample path starting at state
xti .

Note:

1. Since Vt = −λ log(Ψt). If we can get Ψt, we can get Vt and
thus solve optimal control problem. To get the value function,
we don’t need to solve the HJB but We can approximate it
using forward path integral!

2. We have replace the control with optimal control, so we don’t
need to solve it, explicitly.

5



3. It is still hard to solve Eq. (4), but we can get its approxima-
tion by sampling.

4. Regarding the simplification λR−1 = Σε, it couples the control
cost with the system dynamics. This assumption transforms
the Gaussian probability for state transitions into a quadratic
command cost.

5. In [Sutton and Barto, 2018], λ is referred as temperature. High
temperatures cause the actions to be all (nearly) equiproba-
ble. Low temperatures cause a greater difference in selection
probability for actions that differ in their value estimates.

4.1 Special case:

For fully actuated system:

• Optimal control at every time step ti:

u∗ti =

∫
P (τi)u(τi)dτi

• Probability of a trajectory:

p(τi) =
exp(− 1

λ
S̃(τi))∫

exp(− 1
λ
S̃(τi))dτi

For systems that can be partitioned into directly actuated part and non-
directly actuated: (

xm

xc

)
=

(
fm(x)
f c(x)

)
+

(
0
Gc

)
(u+ ε)

When Gc is square and state independent, the optimal control is given
by (refer to eq:23):

u∗ti =

∫
exp(− 1

λ
S̃(τi))εtidτ∫

exp(− 1
λ
S̃(τi))dτ

(5)

where, for many systems,

S̃(τi) = ΦtN +

∫ tN

ti

rtdt (6)
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Note: Eq. (6) has been simplified for specific systems and is different
from what in Table 1 of the original paper. For derivation, refer to 8.1

For other more general cases and PIˆ2 (policy improvement with path
integrals) method, please refer to the paper.

5 INFORCE algorithm
• run simulator with πθ to collect ξ1

• ∇θJ = 1
N

[
R(ξi)

∑
t∇θ log π(ait|sit)

]
• θnew = θold + α∇θJ

6 Optimal control as a graphical model infer-
ence problem

[Kappen et al., 2012] established the link between optimal control and prob-
abilistic inference in a clear way.

The optimal control is to minimize the following KL divergence:

C(x0, p) = DKL(p||ψ)

ψ(τ) = q(τ) exp(−
T∑
t=0

Cx(x, t))

where p is the probability of controlled trajectory, q is the probability of
uncontrolled trajectory, τ = x0:T , S(τ) =

∑T
t=0C

x(x, t), and Cx is the state
dependent cost.

Because

DKL(p||ψ) =

∫
τ

p log(
p

q exp(−S)
)dτ =

∫
τ

p[log(
p

q
) + S]dτ (7)

we can rewrite the cost function as:

R̂(xt, ut, xt+1, t) = log(
pt(xt+1|xt, ut)
qt(xt+1|xt)

) + Cx(xt, t) t = 0, . . . , T − 1

and
R̂(xT , uT , xT+1, T ) = Cx(xT , T )
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The result of this KL minimization yields the "Boltzman distribution"

p(τ) =
1

Z(x0)
ψ(τ)

and the optimal cost:

C(x0, p∗) = − log(Z(x0)),

where Z(x0) =
∑

τ ψ(τ) is a normalization constant.
The optimal control in the current state x0 is given by

p(x1|x0) =
∑
x2:T

p(x1:T |x0)

7 Reinforcement learning and control as prob-
abilistic inference

[Levine, 2018] uses a graphical model to model the relationship between state,
action, the next state, and rewards. It formulates the probability for s and a
to be optimal as exp(r(s,a)), This leads to a very natural posterior distribu-
tion over actions when condition on Ot = 1 for all t ∈ 1, , T

p(τ |Q1:T ) ∝ [p(s1)
T∏
t=1

p(st+1|st, at)] exp(
T∑
t=1

r(st, at)) (8)

The probability of observing a given trajectory is given by the product
between its probability to occur according to the dynamics (the term in
square brackets on the last line), and the exponential of the total reward
along that trajectory.

With such formulation, the objective is to minimize the KL divergence
between:

DKL(p̂||p(τ)) = −Ep̂[
∑
t=1:T

r(s, a)]−H(p̂)

and thus it is to maximize

−DKL(p̂||p(τ)) = Ep̂[
∑
t=1:T

r(s, a)] +H(p̂) (9)
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This type of control objective is sometimes referred to as maximum entropy
reinforcement learning or maximum entropy control.

If we define
q := exp(−

∑
t=0:T

Cu), (10)

where Cu is the control dependent cost. Eq. (7) becomes

−DKL(p||ψ) = −
∫
τ

p log(p)dτ − Ep[
∑
t=0:T

(Cu + Cx)]

= H(p) + E[
∑
t=1:T

r(s, a)] (11)

As we can see that (7) is a special form of (9), where the reward can be
partitioned into a state dependent term and a control dependent term.

Eq (10) shows the probability of uncontrolled trajectory is a function of
’control’ cost, which sounds wired. But because the noise term is in the
control, you can think it as ’noise’ cost.

8 Appendix

8.1 Appendix A

S̃ is defined as:

s̃ = ΦtN +
N−1∑
j=i

qtjdt+
1

2

N−1∑
j=i

||
xctj+1

− xctj
dt

− f ctj ||
2
H−1

tj

dt+
1

2

N−1∑
j=i

log |Hj| (12)

and
Htj := Gc

tj
R−1Gc

tj
>

For many systems, when dt→ 0,

xctj+1
− xctj
dt

− f ctj → Gcu

‖
xctj+1

− xctj
dt

− f ctj‖
2
H−1

tj

→ (Gcu)>(GcR−1Gc>)−1Gcu

→ u>Ru
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For some system, when Gc
t
> = Gc

t
−1 and dt→ 0

s̃ = ΦtN +

∫ tN

ti

rtdt+ C

where C is a constant and it can then be canceled in Eq. (5).

8.2 Diffusion process

a diffusion equation is usually written as:

∂tΦ(r, t) = ∇ · [D(Φ, r)∇Φ(r, t)]

where Φ(r, t) is the density of the diffusing material at location r and time t
and D(φ, r) is the collective diffusion coefficient 1. Diffusion equation shows
us how the diffusion speed depends on the density of the material.

8.3 Laplace approximation

https://james-brennan.github.io/posts/laplace_approximation/ https:
//bookdown.org/rdpeng/advstatcomp/laplace-approximation.html

Simply put the Laplace approximation entails finding a Gaussian approx-
imation to a continuous probability density.

Key notes:

• Technically, it works for functions that are in the class of L2,∫
g2(x)dx <∞

• We are interested in approximating a distribution:

p(z) =
1

Z
f(z)

where Z is the normalization coefficient. Especially we are interested
in its posterior, which is in general computationally intractable.

1https://en.wikipedia.org/wiki/Diffusion_equation
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• log trick + its second-order Taylor expansion at a peak. In details:
To calculate

∫
f(z)dx, do ’log’ trick, f(z) = exp(ln(f(z)), and make a

Taylor expansion of it centered on the peak z0:

ln(f(z)) ≈ ln(f(z0))−
1

2
(A)(z − z0)2

where
A = − d2

dz2
ln f(z)|z=z0

Thus:

f(z) ≈ f(z0) exp(−1

2
(A)(z − z0)2) = f(z0)(

A

2π
)−1/2q(z)

where q(z) is distribution PDF N (z|z0, A−1)

ln(f(z)) ≈ ln(f(z0)−
1

2
(z − z0)>H(z − z0)

where H is the Hessian matrix, the matrix of second-order partial
derivatives which describes the local curvature of ln(f)

8.4 Posterior mode

The maximum of a distribution is called ’mode’, the peaks in a distribution.
An alternative estimate to the posterior mode is the posterior mean. It

is given by E ( |s), whenever it exists. If the posterior distribution of is
symmetric about its mode, and the expectation exists, then the posterior
mean is the same as the posterior mode, but otherwise these estimates will
be different.
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