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Abstract— We describe Team WPI-CMU’s approach to the

DARPA Robotics Challenge (DRC), focusing on our strategy to

avoid failures that required physical human intervention. We

implemented safety features in our controller to detect potential

catastrophic failures, stop the current behavior, and allow

remote intervention by a human supervisor. Our safety methods

and operator interface worked: we avoided catastrophe and

remote operators could safely recover from difficult situations.

We were the only team in the DRC Finals that attempted all

tasks, scored points (14/16), did not require physical human

intervention (a reset), and did not fall in the two missions during

the two days of tests. We also had the most consistent pair of

runs. Much of the paper discusses lessons learned from the

DRC.

I. INTRODUCTION

Our goal in this paper is to be provocative. We believe that

robots are useless for disaster recovery if they require humans

to rescue the robots, rather than the other way around. We were

surprised at how many robots required physical human intervention

during the DARPA Robotics Challenge (DRC) Finals in June,

2015. We are disappointed that the coverage of the DRC has been

dominated by videos of robots falling down such as this video put

out by our sponsor (DARPA, 140,000 views in one month) [1],

and this video put out by the flagship magazine (IEEE Spectrum)

of the professional society sponsoring the Humanoids conference

and which aspires to be the professional society for robotics and

humanoid robotics (1,400,000 views in one month) [2]. It would

have been much better to include some evidence of success in these

videos, so the public would have a more balanced perception of

what happened at the DRC [3].

We were the only team in the DRC Finals that tried all tasks,

did not require physical human intervention (a reset), and did not

fall in the two missions during the two days of tests. We also had

the most consistent pair of runs.

Our task performance was not perfect. We scored 14 out of 16

possible points over the two day DRC. We had a program design

error and an arm hardware failure that caused two attempts at the

drill/cutting task to fail. However, unlike other teams, these failures

did not cause our robot to fall. The robot simply moved on to the

next task.

Our safety code and human-robot control interface prevented

several falls. Other team’s robots fell or got stuck due to operator

errors, robot errors, and hardware failures. If this had been an

actual disaster in which physical human intervention was risky,

costly, inefficient, or not possible (such as recovering from a nuclear

or toxic chemical disaster, a “dirty” bomb attack, or a dangerous

epidemic such as the recent Ebola epidemic), of the teams that
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attempted all tasks the only teams that would have proven useful

or perhaps even survived the two missions over the two days of the

DRC would be the CMU CHIMP team and our team, Team WPI-

CMU. However, none of the robots, including ours, could currently

deal with the complexity and difficulty of an actual disaster site

such as the Fukushima Daiichi disaster site.

We expected bipedal robots to have trouble in the DRC. We used

an Atlas humanoid robot built by Boston Dynamics. Compared to

wheeled and quadruped robots, bipedal humanoids usually have

higher centers of mass and a smaller support region, which results

in a smaller stability margin and a higher risk of hardware damage

when falling. In a real-world scenario where humanoid robots have

to interact with the environment without a safety system such

as a belay, fall prevention and recovery behaviors are necessary.

Avoiding getting stuck and getting un-stuck are also important. The

DRC attempted to mimic a real-world scenario, in which robots had

to perform disaster response related tasks involving physical contact

with the environment. What we observed during the contest was that

most humanoids fell down and no walking humanoid that fell got

back up. We were also surprised that wheeled robots had so much

trouble with balance, falling, and getting stuck in the DRC.

This paper focuses on the top three Atlas teams: IHMC, MIT,

and WPI-CMU. Due to page limits, our references will be largely

limited to our own papers which provide both more details than

this overview paper and extensive references. Please see our web

page for the related papers (including those also submitted to this

conference) and videos [4]. The accompanying video shows our

final run on day 2 of the DRC Finals, illustrating our strategy for

various tasks [5].

II. OUR STRATEGY

We focused on competing with the other Atlas robots in the DRC,

as we were limited in how much we could modify or improve our

robot mechanically to optimize performance for the DRC tasks. Our

strategy was to go slowly enough to reduce the risk of falling to

an acceptable level, complete all tasks within the allotted time (1

hour), and implement fall prediction safety code to safely stop the

robot if a fall was anticipated. We believed other Atlas robot teams

would attempt to go too fast leading to operator and robot errors,

falls, and damage to their robots.

Our “slow and steady” strategy almost worked. Both the MIT

and IHMC Atlas teams suffered from operator errors on the first

day [6], [7]. MIT performed worse on the second day, due to

damage from the first day and difficulty in repairing the robot,

as expected (the manufacturer of the robots, Boston Dynamics,

performed all repairs). IHMC was able to get the damage from its

two falls on the first day repaired, and avoided operator errors on

the second day, resulting in an impressive 2nd place performance on

day 2. The IHMC robot did fall after completing the course on day

2, due to what the American National Football League penalizes as



“excessive celebration” [8]. Other Atlas teams in the DRC Finals

did not do as well.

III. FUNDAMENTAL BEHAVIORS

Optimal Control for Manipulation and Walking: We de-

veloped optimization-based walking and manipulation controllers.

Both consisted of a high-level controller that optimizes task space

trajectories into the future and a low-level full-body controller that

generates instantaneous joint level commands that best track those

trajectories while satisfying physical constraints using Quadratic

Programming (QP) [9], [10]. The high-level controllers output

desired Cartesian motions for specific points on the robot (e.g. foot,

hand, and CoM). The full-body controllers take these as inputs

and generate joint level commands such as joint position, velocity,

and torque, which are then used as desired values in the Boston

Dynamics provided joint level controllers.
Manipulation: For manipulation, inverse kinematics was used

to generate the full state that best tracks the desired Cartesian

commands. Inverse dynamics was then used to track the targets

from inverse kinematics. For the arm joints, we were unable to use

higher velocity gains and failed to achieve acceptable joint tracking

without a position control loop. Explicit inverse kinematics is also

preferred to double integration of accelerations to calculate desired

positions for stability and accuracy reasons.
We used both precalculated trajectories and TrajOpt [11] to plan

trajectories in real-time. In retrospect, we should have precalculated

all trajectories and devised ways to parametrically adjust them

online given the sensed target location. TrajOpt was slow, often

produced unusable trajectories, and its solutions had to be carefully

checked by a human operator.
Walking: Our current approach is to plan footstep locations,

and then the controllers attempt to place the feet on those footstep

locations. Page limits prevent us from describing our foot placement

algorithms here. Early versions are described in [12] and the

versions for the DRC Finals are described in [10]. Future work will

explore specifying cost functions for footstep locations and letting

the optimization-based control trade off footstep error, timing,

effort, and risk.
Given a sequence of desired footsteps, the walking controller

optimizes a center of mass (CoM) trajectory using Differential

Dynamic Programming (DDP) to optimize for a nominal center

of mass trajectory, together with a local linear approximation to the

optimal policy and a local quadratic approximation to the optimal

value function, which are used to stabilize the robot around the

nominal trajectory. DDP is a local iterative trajectory optimization

technique using second order gradient descent that can be applied

to nonlinear dynamics. A nonlinear point mass model that includes

the vertical (Z) dimension is used for trajectory optimization to

take height changes into account. The CoM trajectory is replanned

during every single support phase for the next two footsteps. The

swing foot trajectory is generated by a quintic spline from the liftoff

pose to the desired touch down pose.
Step timing: Reliability was our primary objective for the DRC

Finals, so a more quasi-static walking style was preferred. Having

a slow cadence allowed us to pause walking at any point and gives

the operator a chance to recover when things go wrong. In the DRC

Finals, we used a nominal step length of 40cm and step time of

4s, leading to a stride period (a left step followed by a right step)

of 8s. Among the top three Atlas teams we had the lowest cadence

but took the longest foot steps. On the other hand, the controller

is capable of more dynamic walking, and we have achieved 0.4m/s

walking reliably by just speeding up the cadence (step time 0.8s,

stride period 1.6s). We also note that of the top three Atlas teams,

our footfalls seem to be the most gentle, and shock waves up the

body on each foot fall are apparent in both IHMC’s and MIT’s

walking.

State Estimation: In addition to a state estimator for the

pelvis [13], we also implemented an extended Kalman filter that

estimates the modeling error at the CoM level using linear inverted

pendulum (LIPM) dynamics [14]. For the LIPM model, the mod-

eling error can be treated as an external force or a center of mass

offset. We treat it as an external force and compensate for it in the

inverse dynamics controller.

This estimator is especially helpful when compensating for un-

planned slow changing external forces applied at unknown locations

on the robot, which is quite likely when operating in tight spaces.

It also handles relatively small dynamic forces well when walking,

e.g. dragging a tether or pushing through a spring loaded door.

Thanks to the estimator, very little tuning is done for our mass

model.

Safety Code: Fall Prediction: The most significant contribution

of the external force estimator is that it can detect when a large

external force is being applied that might push the robot over.

We compute a “corrected capture point” (CCP) [15], which is an

offset to the current capture point. The offset takes into account the

estimated external force, represented as an offset to the center of

mass. The corrected capture point getting close to the boundary of

the polygon of support warns the controller that the robot might

fall if the external force is maintained. We can also compute the

corrected capture point assuming that the external force follows a

known time course plus an estimated constant offset, or steadily

increases or decreases for a fixed time interval based on an

estimated derivative. We assume the external force is due to the

robot’s actions, and not due to external disturbances such as wind,

a moving support platform (although earthquakes do happen at the

DRC location in California), or external agents pushing on the

robot. The current behavior is stopped and the robot “frozen” in

place. This early warning system based on the corrected capture

point saved our robot from falling twice at the DRC Finals, where

no safety belay was allowed, and made us the only team that tried

all tasks without falling and or physical human intervention (reset).

A derivation of the corrected capture point starts with LIPM

dynamics augmented with a true center of mass offset and a true

external force:

c̈ = (c+coffset+fext ∗z/mg−cop)∗g/z = (c+∆−cop)∗g/z
(1)

where c is the location of the center of mass projected on the ground

plane, cop is the center of pressure location in that ground plane,

and ∆ is the sum of the true center of mass offset from the modeled

center of mass and any external horizontal force. Our extended

Kalman filter estimates ĉ, ˆ̇c, and ∆̂, taking into account the current

center of mass height z. We assume a constant center of mass height

in estimating the corrected capture point based on the estimated

capture point as described in [15]:

ĈCP = ĈP + ∆̂ = ĉ+ ˆ̇cẑ/g + ∆̂ (2)

Predicting falling during walking is more complex [10].

Results of Safety Code: Robot caught on door frame: In

the DRC rehearsal, the robot was caught on the door frame when

sidestepping though (Figure 1). The walking controller detected an

anomaly in the estimated external force in the sideways direction

(Fx), delayed liftoff and remained in double support, and stopped

the current behavior to allow for manual recovery (Figure 2).

Results of Safety Code: Manipulation Error: For the ma-

nipulation controller, the robot is always assumed to be in double

support, and the support polygon is computed by finding the convex

hull of the foot corner points (light green in Figure 3), computed

using forward kinematics. To prevent the robot from falling during

manipulation, we require the corrected capture point to be within a

subset of the support polygon called the safe region, (dark green in



Fig. 1. Successful sidestepping through the door (left, middle) and the

failure in the DRC rehearsal (right) in which the protective cage (black

padding) for the head is against the white door frame.
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Fig. 2. Atlas was caught on the door frame when sidestepping through

it during the DRC rehearsal. The walking controller delayed liftoff and

remained in double support when the external force estimator detected a

large change in the estimated external force in the robot’s sideways direction

(Fx, through the door). The single support phase is shown by the shaded

area, and the black dashed lines indicates the planned liftoff time. The

estimated CoM is the sum of the model CoM and the estimated CoM offset.

Figure 3), When the corrected capture point escapes the safe region,

a freeze signal is sent to the manipulation controller, and it clears

all currently executing joint trajectories and freezes the robot at the

current pose, with the balance controller still running.

During our second run in the Finals, our right electric forearm

mechanically failed when the cutting motion was initiated for the

drill task. The uncontrolled forearm wedged the drill into the

wall and pushed the robot backwards. The controller stopped the

behavior (a freeze), and saved the robot from falling (Figure 3). The

operator was then able to recover from an otherwise catastrophic

scenario.

The time plot in Figure 3 shows candidate fall predictors during

this event. We can eliminate some candidate fall predictors easily.

The center of mass (CoM) (and a “corrected” CoM (not shown))

usually provide a fall warning too late, because the CoM velocity is

not included. The capture point (CP) does not include information

about external forces. The center of pressure (CoP) is noisy and

gives too many false alarms. It can warn of foot tipping, but it is

less reliable about warning about robot falling, which is not the

same thing as foot tipping in a force controlled robot or if there are
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Fig. 3. Top Left: Robot posture after error detection. Top Right: Black

trace: The corrected capture point (CCP) up to the error detection, Red trace:

The CCP during the “frozen” period, and Blue trace: The CCP moves back

to the center of the polygon of support during manual recovery. Bottom:

Plots of candidate fall predictors in the fore/aft direction during this event.

The black vertical dashed lines mark the freeze time and the start of manual

recovery.

non-foot contacts and external forces. In this plot, we see that the

CoP moves away from the safe region during recovery, predicting

that the robot is falling again, while the corrected capture point

(CCP) moves towards the interior of the safe region.

Interface: Our interface supported different types of human

inputs that applied to all tasks, as well as task-specific inputs.

Operators could command tasks or task components, and specify

movements or velocities in joint coordinates, Cartesian coordinates,

and task coordinates. The ability to directly teleoperate the robot

and the ability to command the hands to do simple grasping

operations were used to perform the surprise tasks. Stored behaviors

could be replayed. Targets could be designated on displayed images

and point clouds.

Results: Error Detection and Recovery Using Our Interface:

While walking over the rough terrain on day 1, there was a bad

step, which was rapidly detected by human operators and the robot

was stopped. The human operators developed a recovery strategy,

and the robot successfully executed it without falling down. What

we believe happened is that something shortened the step (perhaps

the heel touched the ground during swing) and put the foot at an

angle supported by two different cinder blocks on touchdown, rather

than fully supported by one cinder block (Figure 4). It was very

impressive that the controller was able to handle this so that the

robot had the opportunity to recover, and that our operators could

recover the robot without letting it fall or require physical human

intervention.

Perception: Page limits prevent us from fully describing our per-

ception approaches and algorithms. We supported sensor fusion and

object/environment mapping. LIDAR information was combined

with stereo vision. The user could designate targets by using the

mouse to designate parts of displayed images and point clouds, and

our perception code supporting transforming this “scribble” into a

useful object segmentation. Further details can be found in [16].

IV. TASKS: STRATEGIES AND RESULTS

Driving: Figure 5 shows our robot driving the Polaris X900

vehicle in the DRC Finals. We won the “best driver” award in the



Fig. 4. Terrain Error: Top Left: The “frozen” robot, Top Right: A view of

the left foot from the knee camera showing it straddling two cinder blocks.

Bottom row: Mismatch between the plan and the actual step

DRC Trials [9]. For the Finals, we developed a new mechanical

tool for the robot to use to turn the steering wheel, and procedures

to compensate for kinematic modeling errors so that the steering

wheel turned smoothly. We provided the operator with a plan

view for driving based on visual odometry, LIDAR, and IMU

information. There are two components to driving: speed control

and steering. Remote operators could easily steer the vehicle even

with considerably delayed feedback. However, the operators found

it difficult to control speed by commanding the robot to press the

accelerator, so we set up an autonomous speed control behavior.

Stereo camera information was used to generate an estimate of

the velocity of the vehicle. In visually dense environments, the

stereo cameras with a modified version of the libviso2 package [17]

provided very good data. The desired velocity was provided by the

operator and was passed to a PI controller that actuates the throttle

using the ankle joint of the robot. Once set, the robot drives the

vehicle at a steady and slow pace autonomously. The improved

display and the autonomous speed control behavior is what we

believe made driving reliable. Driving worked reliably on both days

of the DRC and in many practices before the DRC. Further details

can be found in [18].

Egress: Our strategy for getting out of the car was to maximize

contact with the car, as well as provide some mechanical aids

(Figure 5). Maximizing contact led to using the car to stabilize

the robot as much as possible. It is interesting that other Atlas

teams tried to minimize contact with the car, spending a lot of

time carefully balancing on one foot with no other supporting or

stabilizing contacts. MIT released a video of their robot standing

on one foot while the vehicle is being shaken [19]. These are

impressive but perhaps unnecessary demonstrations of high quality

robot control. Both IHMC and MIT added a handle to the car within

easy reach of the robot to hold while driving, but their robots did

not use it to get out of the car.

In terms of mechanical aids, we used wooden blocks to make

sure the robot sat in the seat the same way each time, as the bottom

of the pelvis was rigid, small, and had little friction with the hard

seat, so the robot easily slid and rotated. We provided an accelerator

pedal extension so the robot could drive from the passenger side,

as it could not fit behind the steering wheel. We added a wooden

bar to replace the missing car door that could have been used as a

support. We provided a step since the robot’s leg could not reach

the ground when seated or standing in the car.

We manually decomposed the task into phases with different

contact sets, desired poses, and desired trajectories. We optimized

the sequence of static robot poses as well as contact locations

that satisfied constraints such as geometric, joint limit, and equilib-

Fig. 5. Driving and egress (getting out of the car) tasks.

rium constraints. To accommodate modeling errors, uncertainties,

and satisfy continuous contact constraints, we used online robot

pose optimization to generate smooth trajectories based on sensor

feedback and user inputs. Our motion planning method generated

a rough plan for the challenging car egress task of the DRC.

Combined with online robot pose optimization, the rough plan could

be applied to real-time control with excellent performance. Our

egress worked reliably four out of four times at the DRC Finals

(rehearsal, battery testing, day 1, and day 2) as well as during many

practice tests before the DRC. Further details are presented in [20].

Door: Door traversal can be broken down into four sub-tasks;

door detection, walk to the door, door opening, and walk through

the door. Door detection locates the door and finds its normal. Wrist

mounted cameras assisted in finding the door handle, maintaining

contact, and providing information to the human supervisor. The

handle is turned, and in the DRC Finals with a push door, the

other arm is used to push the door open. We had the robot walk

sideways through the doorway to maximize clearance, taking into

account the large sideways sway of the robot as it walked (Figure 1).

This behavior worked four out of five times at the DRC Finals

including the battery test and the rehearsal. The one failure during

the rehearsal was safely handled as described previously. More

details are available in [21].

Valve: The valve task involved approaching and turning a valve

(Figure 6). The robot was manually commanded to go to the

vicinity of the valve. The operator marked the valve with a line

using a mouse in one of the camera images. The valve was then

automatically located and segmented in the image. We took the

approach of inserting fingers into the interior of the valve handle,

while some teams grasped the handle rim. This task was performed

twice at the DRC finals, and is one of our most reliable.

Drill/Cutting: The drill/cutting task re-used many components

of the valve task. The robot was manually commanded to go to the

task area. The operator marked a drill with a line using a mouse in

one of the camera images. The drill was then automatically located.

We developed a two handed strategy to grasp the drill and rotate it

so the switch was exposed. We implemented force control based on

the wrist force/torque sensor to ensure a reasonable contact force

to fully insert the cutting drill bit but not push the robot over.

Both MIT and our team used a two handed grasp and object

reorientation strategy. This was a huge mistake for both teams. For

us, although this strategy was more reliable than our one handed

strategies if both electric forearms of the robot were working, it

was rarely the case that both forearms were working. For example,

on the morning of day 2 of the Finals we replaced the left forearm

because it had failed, and the right forearm failed during the drill

task. IHMC, MIT, and WPI-CMU all had to replace faulty forearms

during the DRC Finals. We had little practice time in the months

we had the new forearms before the DRC as one or both were often

not working. We should have developed a one handed strategy that

used the shelves as another hand to hold the drill during regrasping

(as some teams did), or at least have a one handed backup strategy

in case of forearm failure. We do not have statistics on how well



Fig. 6. Rotating the valve, reorienting the drill and regrasping it to turn it

on, and having completed the “push the switch down” surprise task..

we can do this task, as we were rarely able to test it due to

forearm unreliability. We did the other manipulation tasks (door,

valve, surprise) one handed, and were able to do them with either

hand. For MIT, on day 1 a fall broke one of their forearms, and

they had to skip the drill task that day. IHMC used a one-handed

strategy and succeeded at the drill task both days at the DRC Final.

Terrain and Stairs: We have already described our approach to

controlling robot walking. It was useful for the terrain and stairs task

to take into account the change in height of the robot. To decrease

the risk of falling we limited the step size of steps going down, as

these steps are the most difficult for the robot, due to ankle range

limits and knee torque limits. The calf hitting the next tread is a

problem for Atlas robots walking up stairs. We used a splayed foot

strategy to reduce this problem, while other Atlas teams walked on

their toes. We also used high oil pressure and a task specific planner

for the stairs task. Figure 7 shows the terrain and stairs tasks, as

well as stepping off the platform during car egress. Each of these

tasks, including stepping off the egress platform, was performed

twice at the DRC Finals. The stair task was only fully executed at

the DRC Finals, as our safety belay system was not tall enough to

allow full stair climbing and we did not have enough faith in our

software or robot to do it without a belay before the DRC Finals.

This lack of trust in our own robot performance does not bode

well for deployment of humanoid robots in the near future, unless

there is a paradigm shift in both hardware and software design.

More details on walking are available from [10]. More details on

a paradigm shift are available from [22].

Debris: Although we did not perform this task in the DRC, we

were prepared to do the debris task with a shuffling gait with small

vertical foot clearance. In tests, this approach sometimes failed

because the pieces of debris jam against the walls and each other.

We felt the terrain task was easier and had a higher expected value.

Early detection of robot or operator errors can prevent

falls. Often falling is caused by errors in robot locomotion or

manipulation, where the robot pushes or pulls itself over, rather than

outside perturbations such as wind, support movement, or external

agents pushing the robot. Our field has over-emphasized research

on responses to outside perturbations such as “push recovery” over

handling robot-generated errors. We found that simply stopping

what the robot was doing gave the remote operator enough time

to successfully intervene. It is an interesting research question as to

how to distinguish between robot errors and external disturbances,

or combinations of the two, especially with no full body skin tactile

sensing. The correct response to different robot errors and external

disturbances are often quite different and conflicting.

We could have done more to provide early fall predictions. In

manipulation, we tracked the corrected capture point. In walking,

the corrected capture point moves around quite a bit. Its deviation

from its expected motion can be used to predict falling. Vertical foot

forces (Fz) too high or not high enough, and other foot forces and

torques being large are warning signs of large external forces, Joint

torque sensors can be used to attempt to locate a single external

force to either a hand (manipulation), a foot (tripping), or another

part of the body (collision). Robot skin-based sensing would have

Fig. 7. Stepping off platform, Walking over terrain, Climbing stairs

been and can be expected to be extremely useful as part of an

early warning system. Horizontal foot forces (Fx, Fy), yaw torque

(torque around a vertical axis: Mz) going to zero, foot motion

due to deflection of the sole or small slips measured using optical

sensors, and vibration measured in force/torque sensors or IMUs

in the foot are early warning signs of possible slipping. The center

of pressure going to a foot edge and foot tipping measured by

a foot IMU are early warning signs of individual foot tipping and

resultant slipping or possible collapse of support due to ankle torque

saturation. Any part of the body such as the foot or hand having

a large tracking error is a useful trigger for freezing the robot and

operator intervention.

Sensing is cheap, so let’s use as much as possible. We strongly

believe that humanoids should be outfitted with as much sensing as

possible. The absence of horizontal force and yaw torque sensing

in the Atlas feet limited our ability to avoid foot slip, reduce the

risk of falling, and optimize gait using learning. We commissioned

Optoforce to build true six axis foot force/torque sensors for the

Atlas feet, but the sensors were not ready in time for the DRC.

We will explore how much they improve performance in future

work. Redundant sensor systems make calibration and detection of

hardware failure much easier.

Super-human sensing is useful. Super-human sensing (whole

body vision systems, for example) is a useful research area which

could greatly improve humanoid robustness and performance. We

used vision systems on the wrists to guide manipulation and on the

knees to guide locomotion. Time prevented us from implementing

planned vision systems located on the feet. We plan to build

super-human feet with cameras viewing in all directions and IMUs

(accelerometers and gyros). Our goal is to measure foot translational

acceleration (accelerometers), linear and angular velocity (optical

flow and gyros), and track foot translation, orientation, and relative

positions (IMU orientation tracking and image matching). Longer

term, we intend to build robust high resolution tactile sensing for the

soles of the feet, as well as similar robust high resolution sensing

skin. We intend to build many types of optical sensing into the

robot’s skin, to do obstacle and collision detection at a variety of

distances and resolutions [23].

V. WHAT DID WE LEARN FROM OUR OWN WORK?

Inverse kinematics is still a difficult problem. Tuning

optimization-based inverse kinematics algorithms to avoid wild

motions of the arm and still achieve task goals proved difficult,

and constraint-based inverse kinematics algorithms eliminated too

much of the workspace. We need more work in this area to achieve

human levels of performance in trading off desired end effector

motion in task space and undesired motion of the rest of the arm.

More degrees of freedom makes motion planning much easier

(7 ≫ 6). The original six degree of freedom arms on Atlas led

to many problems finding reasonable inverse kinematic solutions.

Adding an additional arm degree of freedom and including the

whole body in manipulation planning greatly reduced the challenges



of inverse kinematics. Similarly, a neck that allowed head turning

(rotation about a vertical axis) would have been vary useful. The

Atlas robot only allowed head nodding (rotation around a horizontal

axis in the frontal plane (a pitch axis)).

Changing dimensionality is difficult for current control

approaches. Our quadratic programming-based full-body control

typically introduces large command discontinuities when the dimen-

sionality of the problem changes due to contact changes, stick/slip

change on any contact, singularities, and hitting or moving off of

joint stops or limits. A typical step involves heel strike, foot flat

contact, and toe push off. Walking on stairs may involve walking on

the toes as well as on the sole of the foot. A large step down may

involve jumping (no foot contacts), toe strike and foot flat, and the

knee may go from straight to quite bent. Prioritized or constraint

hierarchy approaches have similar problems with structural change

of kinematics or dynamics.

Walk with your entire body. It is startling to realize that we

and all other teams failed to use the stair railings, put a hand on the

wall to help cross the rough terrain, or grab the door frame to more

safely get through the door in the DRC Finals. Even drunk people

are smart enough to use nearby supports. Why didn’t our robots

do this? We avoid contacts and the resultant structural changes.

More contacts make tasks mechanically easier, but algorithmically

more complicated. Our contact-rich egress compared to other team’s

contact-avoiding strategies is a good example of this [20], as was

our ladder climbing in the DRC Trials [9].

Blend, don’t switch. We developed an approach to structural

change smoothing in our quadratic programming. In a previous

implementation, the inverse dynamics QP changed dimension based

on the number of contacts. Discrete changes can also happen due

to constraint manifold changes such as during toe-off, when the

foot frame CoP is constrained at the toe. Such changes will cause

sudden jumps in outputs that can induce undesired oscillations on

the physical robot. These jumps are caused by structural changes

in the problem specification, and cannot be handled properly by

just adding cost terms that penalize changes. Our solution is to

maintain the same QP dimension and gradually blend the constraints

over a short period of time. We always assume the largest number

of contacts, but heavily regularize the magnitude of the contact

force and relax the acceleration constraints for the inactive contacts.

Inequality constraint surfaces are changed smoothly when a change

is required.

Design robots to survive failure and recover. Robustness to

falls (avoiding damage) and fall recovery (getting back up) need

to be designed in from the start, not retro-fitted to a completed

humanoid design. The Atlas robot was too top heavy and its arms

were too weak (similar to a Tyrannosaurus Rex) for it to reliably

get up from a fall, especially in complex patterns of support and

obstacles such as lying on the stairs, rough terrain, debris, or in

the car or door frame. We believe lighter and structurally flexible

robots with substantial soft tissue (similar to humans) are a better

humanoid design. We have been exploring inflatable robot designs

as one approach to fall-tolerant robots [22]. We note that in the

DRC rehearsal both IHMC and our team did not practice most tasks,

since safety belays were not allowed. We did not have enough faith

in our software or robot, and we believed a fall would be fatally

damaging to our Atlas robots. In the DRC Finals it turned out (at

least for IHMC) that fall damage was more easily repaired that we

anticipated, but MIT was less fortunate. As mentioned previously,

this lack of faith in our own robot performance does not bode well

for deployment of humanoid robots in the near future, unless there

is a paradigm shift in both hardware and software design [22].

Hardware reliability is a limiting factor for humanoids.

Humanoid systems consist of many components, any of which

can fail. As a result, our ATLAS robot had a mean time between

failures of hours or, at most, days. Since we could not repair the

robot ourselves, we often ran the robot with various components

not working. We had to develop behaviors that tolerated or worked

around hardware failure. In particular, it was rare that both electrical

forearms in the final Atlas configuration were both working at the

same time. As previously discussed, we should have done a better

job developing behaviors that worked when unreliable components

actually turned out to be not working, rather than engage in wishful

thinking that the problems would get fixed or go away before the

DRC.

Operators want to control the robot at many levels. Our robot

operators wanted to be able to control the robot at many levels, and

rapidly and conveniently switch between them: 1) command joint

velocities or changes in positions, 2) command Cartesian velocities

or changes in positions, 3) designate end effector targets such as

desired grasps or footsteps, 4) provide task parameters such as

speed, and 5) select tasks or task components to perform.

Approximate self-collision detection was adequate. We used

crude capsule-based approximations of the robot link shapes to

avoid self-collisions.

We can do better in terms of control. One of our goals is

coming closer to human behavior in terms of speed, robustness, full

body locomotion, and versatility. A very simple step recovery be-

havior based on the corrected capture point has been implemented.

We think high cadence dynamic walking, heel strike, and toe push

off are essential to fast robust walking. To achieve this, better system

identification will further bridge the gap between simulation and

hardware and improve the overall performance. Optimizing angular

momentum in the high-level controller will also benefit fast walking

and will increase the safety margin for balancing.

We can do much better in terms of human-robot interaction.

Supervisory control of the DRC robots was only possible by

operators who had extensively practiced for months, and even

then errors were made. We couldn’t touch our robot without two

emergency stops and rubber gloves to prevent 480V electric shocks.

We could safely poke our robot with a stick. Robots and humans

aren’t really working together until control of a robot can be learned

in minutes and physical interaction isn’t life threatening, let alone

easy and fun [22].

VI. WHAT DID WE LEARN AT THE DRC?

We are collecting data of what caused various events at the

DRC from all teams. We want solid data to test hypotheses about

what led to success or problems in the DRC, including falls, failed

attempts at tasks, long periods of robot inactivity, operator errors,

etc. Many teams have already responded [3].

Did the time pressure or “speeding” lead to performance

issues? We believe that no robot moved fast enough to have

dynamic issues sufficient to cause it to lose control authority.

However, it is clear from the data that trying to do the tasks quickly

caused huge problems for the human operators. The top six teams

all had major operator errors leading to a fall, a reset or large delay,

or a task failure [3]. After entering the contest believing that robots

were the issue, we now believe it is the human operators that are

the real issue. They are the source of the good performance of the

DRC robots, but they are also the source of many of the failures

as well. The biggest enemy of robot stability and performance in

the DRC was operator errors [3].

The most cost effective research area to improve robot perfor-

mance is Human-Robot Interaction (HRI). Developing ways to

avoid and survive operator errors is crucial for real-world robotics.

Human operators make mistakes under pressure, especially without

extensive training and practice in realistic conditions. Interfaces

need to help eliminate errors, reduce the effect of errors, and speed

the recovery or implement “undo” operations when errors happen.



Interfaces need to be idiot proof, require no typing, have no check

boxes, and minimize the information displayed and the options the

operator has to decide between. The best interface is perhaps a large

green go button and a much larger red STOP button.

Have we figured out how to eliminate programming errors?

No. IHMC, MIT, and WPI-CMU all had bugs that caused falls or

performance issues that were not detected in extensive testing in

simulation and on the actual robots doing the DRC tasks in replica

DRC test facilities [3]. IHMC in particular tried to have excellent

software engineering practices, and still had an undetected bug that

helped cause a fall on the stairs on day 1 of the DRC [7].

Behaviors were fragile. KAIST reported that a slightly longer

drill bit at the DRC compared to what it practiced with caused

problems. CHIMP had issues with friction variations. WPI-CMU

had several parameters that had been very stable and well tested in

our DRC test setup replica, but that had to be changed slightly in

the DRC (perhaps due to running on a battery for the first time).

TRACLabs had problems with the BDI behaviors at the DRC.

AIST-NEDO had a 4cm ground level perception error, and fell

coming off the terrain. To be useful, robots need to handle these

types of variations. In the DARPA Learning Locomotion project,

we and other teams had this problem frequently. Behaviors that

worked very well and robustly in our labs did not work or were

erratic when tested on an “identical” setup at a DARPA test site.

Behaviors need to be robust to component failure. Many Atlas

robots had faulty forearms that needed to be replaced, especially

after a fall. Two handed drill task strategies turned out to be a

big mistake, even though they were more robust than one handed

strategies when both arms were working.

Heat dissipation, and planning for thermal management

are important. One failure mode was that Atlas forearm motors

overheated and were automatically shut down. We now believe

we could have avoided these failures by paying attention to and

planning about thermal behavior in addition to mechanical behavior.

NimbRo also had motor overheating issues in their leg/wheel hybrid

robot. The winning DRC Finals and Trials teams put a lot of

emphasis on heat dissipation and thermal management in their robot

and control system designs.

What did other top Atlas teams do about fall detection

and prevention? MIT developed step recovery and bracing (using

nearby surfaces for stabilization), but disabled them during car

egress as its complexity and difficulty in doing good pose estimation

relative to the car made finding reliable recovery strategies diffi-

cult [6]. We also disabled fall detection and recovery during egress

for these reasons, and would have relied on manual intervention

by an operator to recover from an egress failure. IHMC monitored

the Capture Point [15] during manipulation tasks. The operator was

alerted (by an audio beeping sound) if the Capture Point was off

by about 2cm and the beeping increased in frequency as the error

increased. If a threshold of 4cm was exceeded arm motions would

be automatically stopped and the behavior queue reset. Both of

these features prevented some falls when the robot was pushing too

hard against a wall or fixed object. IHMC reports that this greatly

reduced the operator attentional load, as the operator did not have to

worry as much about hitting things. An example is bumping a wall

when picking up the drill. With these features, the operator does

not need to preview motions and triple check for collisions. With

an emergency abort, operators could be less cautions. In a situation

where falls are not fatal (with the DRC reset or the ability to get

back up) IHMC found that their robot walked faster and actually

fell less often, because operator’s attitudes changed [7].

Leg/wheel hybrids are very successful when flat floors and

sparse light debris are present. CHIMP, KAIST, UNLV, Ro-

boSimian, and NimbRo are examples of this. It is an open question

what combinations of wheels, tracks, and limbs will be useful in

the spectrum of rubble typically found in a collapsed building or

an explosion or earthquake site.

Some leg/wheel hybrids and quadrupeds did not do any

rough terrain. NimbRo, Aero, and RoboSimian did not do the

rough terrain task or the stairs task at the DRC. It was possible

to do the debris task instead of the terrain task and robots with

wheels chose to do the debris task (including the Hubo teams).

CHIMP also plowed through the debris, and did not do (or need to

do) the rough terrain task. CHIMP did do the stairs. This pattern

of not doing rough terrain in the form of tilted cinder blocks or

stairs is surprising, in that tracked and quadruped designs were

originally advocated as better ways to deal with rough terrain than

bipedal designs. All of the biped robots that got that far chose the

rough terrain task instead of the debris task. We found that shuffling

through the debris was unreliable due to jamming, and picking up

the debris was too slow.

Mechanical details of the robot could make a difference in

the DRC tasks. In addition to wheels or tracks, mechanical details

such as the ratio of the size of the feet to the center of mass height

could make a difference in how hard the DRC was. A practical

limit to the foot size was the size of a cinder block. No robot went

that far in taking advantage of the details of the DRC course. We

believe the Atlas robots had small feet relative to other bipeds, but

we do not have foot measurements and center of mass heights for

the other robots.

Wheeled vehicles need to balance and get un-stuck. To our

surprise, many wheeled and tracked vehicles fell (CHIMP, Aero)

or almost fell (KAIST, NimbRo). It was clear from the DRC that

many of these robots were operating in the dynamic regime, and

all needed to take dynamics into account to avoid roll-over, avoid

getting stuck, or recover from being stuck.

Why didn’t any robot use railings, walls, door frames,

or obstacles for support and stabilization? Humans use stair

railings, and brace themselves by reaching out to a nearby wall

when walking over difficult rough terrain. Why didn’t any DRC

robots do this? Full body locomotion (handholds, bracing, leaning

against a wall or obstacles) should be easier than our current

high performance minimum contact locomotion approaches. Some

robots used their arms to help during egress (KAIST, CHIMP,

RoboSimian, WPI-CMU) [20]. We were one of the few teams to

use arms in ladder climbing in the DRC Trials [9]. IHMC chose

not to use the handrail on the stairs because during development

the Atlas robots had very poor arm force control due to faulty wrist

force/torque sensors, and the Atlas arms have a lot of static friction

making implementing arm compliance difficult [7]. We had similar

problems with our Atlas robot.

How to use foot force/torque sensors? Of the top three Atlas

teams, our understanding is that IHMC and MIT both used the

foot force/torque information just as a binary contact sensor [6],

[7]. We used foot force/torque sensing in our state estimator and

falling prediction, and controlled the robot using full state feedback

and joint level force control, which includes joint (including ankle)

torque feedback, but does not include direct contact force/torque

feedback. Some ZMP-based robots use output feedback in the form

of contact force/torque feedback to do foot force control. We need

to introduce output feedback and contact force/torque control to our

QP and state-based full body control and perhaps to higher level

control based on simple models.

Gentle touchdowns make walking easier or harder? Our

footsteps seemed much softer with less of a shock wave travelling

up the robot body than other Atlas teams. Does a firm footstep (a

stomp) make sensing and control of locomotion easier or harder?

Is compliance useful? If so, how much, when, and where?

We note that when Atlas robots fell, they often seemed very stiff

with legs sticking up in the air and joints not moving during the



fall (all of the videos of the other Atlas teams seem to have this

behavior, similar to videos of the Honda Asimo falling). Perhaps

very little compliance was actually being used in these so-called

force-controlled robots.

Be ready for the worst case. In our Day 2 run we lost the

DARPA provided communications between the operators and the

robot in a full communication zone (standing before the stairs)

for at least six minutes, which counted against our time. The

lesson here is that for real robustness, we should have planned for

conditions worse than expected. We could have easily programmed

behaviors to be initiated autonomously if communications unexpect-

edly failed. Our understanding is that CHIMP lost communications

during several tasks on day 2, including the driving task, when full

communications were scheduled. CHIMP crashed the car, when it

could have easily autonomously stopped, or autonomously driven

the entire driving course.

How do we get better perception and autonomy? A more

subtle issue is that many DRC teams were dominated by people who

work on robot hardware and control, and were weaker in perception,

reasoning, and autonomy. Our impression is that many teams used

standard libraries such as OpenCV, OpenSLAM. the Point Cloud

Library, and other libraries, some of which are available through

ROS. We also used LIBVISO2, a library for visual odometry.

In some cases one can get excellent performance from general

software libraries, but usually software libraries make it easy to

get mediocre performance. In the DRC, this problem was solved

by over-relying on the human operator and the always-on 9600

baud link. We need to figure out ways to get the perception and

autonomy research community interested in helping us make robots

that are more aware and autonomous, and going beyond standard

libraries. It takes a real commitment to making perception and

autonomy software work on a real robot, and there need to be

rewards for doing so. In academia, this type of work, going the

“last mile”, is not respected or rewarded. We note that any student

with perception and autonomy expertise is being snapped up by

companies interested in automated driving, so it will be a while

before the rest of robotics moves forward in this area.

There is something wrong with our field of humanoid robots.

We have collectively produced many videos showing convincing

humanoid robot performance. However, in a situation where the

researchers did not control the test, most humanoid robots, even

older and well-tested designs, performed poorly and often fell. It is

clear that our field needs to put much more emphasis on building

reliable systems, relative to simulations and theoretical results.

We need to understand why our current hardware and software

approaches are so unreliable.

VII. CONCLUSIONS

The “slow and steady” strategy did not win this race, but it came

close. We implemented safety features in our controller to detect

potential catastrophic failures, stop the current behavior, and allow

remote intervention by a human supervisor. We implemented a

human interface that allowed remote operators to usefully intervene

and solve problems. We were the only team in the DRC Finals that

tried all tasks, did not require physical human intervention, and did

not fall in the two missions during the two days of the DRC Finals.

We believe taking operator and robot error handling seriously is a

key step towards reliable humanoid robot performance.
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