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Abstract— We present a motion planning and control method
for contact-rich full-body behaviors, particularly, the car
egress task of the DARPA Robotics Challenge (DRC). We
take advantage of human experience by manually specifying
multiple task phases, each of which has a specific contact
mode. Then, we optimize a sequence of static robot poses as
well as contact locations that satisfy all constraints, such as
geometric constraints, joint limit constraints, and equilibrium
constraints. To accommodate model errors, uncertainties, and
satisfy continuous contact constraints, we use online robot pose
optimization to generate smooth trajectories based on sensor
feedback and user inputs. We demonstrate with experiments
that our motion planning method is capable of generating a
rough plan for the challenging car egress task of the DRC.
Combined with online robot pose optimization, the rough plan
could be applied with excellent performance.

I. INTRODUCTION

The DARPA Robotics Challenge (DRC) aimed to develop

robot systems that are capable of assisting humans in re-

sponding to natural and man-made disasters. In the first task,

the robot needs to drive a car, which is a Polaris Ranger

X900, for a certain distance and then exit the car. The

completion of this task demonstrates mounted mobility and

the ability to operate vehicles designed for humans.

We are using the Boston Dynamics Atlas robot, as shown

in Fig. 1. In this paper, we present our motion planning and

control method for whole-body manipulation behaviors with

many contacts, particularly, for the Atlas robot to get out of

a vehicle.

(a) the Atlas robot (b) Polaris Ranger X900

Fig. 1: A photo of the Atlas robot and the vehicle, Polaris

Ranger X900.

Although seemingly straightforward for humans, car

egress turns out to be so difficult for the Atlas robot that
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no team succeeded in doing it or even tried it in the DRC

Trials in December, 2013. Besides limited development time

for each team, car egress on its own is difficult. First of

all, humanoid robots are intrinsically floating base systems,

which means there is no body part fixed to the ground of

the vehicle. Therefore, the first consideration is to maintain

balance. Second, the completion of full-body manipulation

tasks relies heavily on the maintenance of contacts. For the

car egress task, the free space is very limited, which makes

motion planning challenging. Furthermore, the Atlas robot

is not as flexible as humans which makes moving inside

the car difficult. The Atlas robot also lacks observability, for

example, it can’t detect the location and magnitude of contact

forces except for those on its feet and hands. In brief, just

imagine how challenging it is for a fat person wearing a

heavy backpack and a thick diving suit to exit a car.

The most popular motion planning technologies for hu-

manoid robots are those based on probabilistic sampling

due to their ability to plan efficiently in high-dimensional

C-spaces [1], [2], [3], [4], [5]. However, pure rejection

sampling doesn’t work well when closed-chain and end-

effector pose constraints exist because the volume of the

feasible space is zero in the C-Space and other constraints,

such as equilibrium and collision-avoidance, further reduce

its volume. To address the problem of sampling on constraint

manifolds, approaches using projection operations have been

developed [6], [7], [8].

Another widely used technique to generate full-body mo-

tions for humanoid robots is based on inverse kinematics and

dynamics. A hierarchical framework designed for humanoid

robots is presented in [12], [13]. It handles constraints and

multiple objectives by solving a hierarchical QP problem.

However, it is hard to determine the priorities among several

objectives. Moreover, it may suffer from singularities be-

cause the QP problem linearizes the system about the model

operating point and doesn’t take long term cost into account.

Some approaches first optimize task-space trajectories, such

as trajectories for the center of mass and a swing foot, using

a simplified model, such as the linear inverted pendulum

model. Then they solve inverse kinematics to generate full

body motions [9], [14]. However, in a very constrained

environment, it is hard to find a feasible full-body trajectory

that is collision-free and satisfies equilibrium constraints and

task-space trajectories.

During motion planning, we take advantage of human

experience by manually defining multiple task phases, each

of which has a specific contact mode. We then specify shape

objectives, such as the upper body and foot orientation,



geometry constraint cost and so on. After that, we opti-

mize a sequence of robot poses/contact locations that can

maintain balance. To satisfy constraints continuously and

accommodate approximation and other errors, we use the

offline generated robot poses as desired poses for each task

phase and solve an inverse kinematics problem on the fly

based on sensor feedback and user inputs.

The organization of this paper is as follows: Section

II presents the motion planning method and the full-body

control method. Experimental results are shown in Section

III, followed by discussions and conclusions in Section IV.

II. APPROACH

A. Motion Planning

Fig. 2: Overview of the offline part of our motion planning

approach. Green boxes are user input data. Yellow boxes are

procedures. Blue boxes are intermediate data.

For the sake of clarity, similar to [10], we denote a contact

as an association between a point on the robot and a point in

the environment. A set of contacts forms a candidate ’stance’,

σ. Because the Atlas robot has a similar body configuration

as humans, for a specific full-body manipulation task, we

take advantage of human experience by manually specifying

multiple task phases, each of which has predetermined body

contacts. We then optimize contact locations in the environ-

ment and robot poses for each task phase. For example, we

specify the following task phases for car egress: Phase 0) sit,

Phase 1) right foot out, Phase 2) stand up inside, Phase 3)

move right inside, Phase 4) left foot out, and Phase 5) stand

up. For each phase, we specify desired contact locations or

desired contact regions on the car. If a contact region is spec-

ified, contact locations are sampled in order to find the best

contact locations. We use 2D Halton sampling to allow us to

sample more contacts with low discrepancy as needed [5].

We also specify nominal robot poses for the optimizer to start

with and shape/geometry costs in order to generate natural

poses without unexpected collisions. The offline part of our

motion planning approach is shown in Fig. 2. The reason for

us to use contact sampling is to reduce the computational cost

Fig. 3: User Interface for nominal pose selection. The po-

sition and orientation of the hands, the feet, the pelvis, and

the torso can be controlled interactively through this UI.

from a continuous contact location optimization to a discrete

contact location optimization. Moreover, contact sampling

allows us to easily take advantage of parallel computing.

After creating multiple optimal robot poses for each

phase, we search for the optimal sequence of robot poses

as well as the optimal contact locations. We consider a

’weak’ connection between two stance manifolds using a

connectivity cost rather than require that there exists a

nonempty common set of two stance manifolds for them

to be connected as in [10]. In our weighted graph, nodes

are feasible configurations associated with a pose cost and

edges are connections between two nodes associated with

a connectivity cost. We find the optimal sequence of robot

poses by finding the shorted path in the weighted graph.

1) Pose Optimization: Starting from a nominal pose, we

use online optimization to enforce the contact constraints and

find an optimal robot pose that is statically stable and without

unexpected collisions.

Assuming there are n contact points for the current phase,

to find a feasible robot pose, we solve a Nonlinear Program-

ming Problem (NLP):

minimize
q,τ,f1,...,fn

Cp(q, τ, f1, . . . , fn)

subject to Cσ(q) = 0

h(q) = Bτ +
n
∑

i=1

JT

i fi

fimin
≤ fi ≤ fimax

qmin ≤ q ≤ qmax

τmin ≤ τ ≤ τmax,

(1)

where τ is a vector of joint actuation torques, fi is a vector

of contact forces on the ith contact point, Cp(·) is the pose

cost function, Cσ(·) is a vector of distances between the

points on the robot and their desired contact locations in

the environment, h(q) is the gravitational forces, B is a

selection matrix, which is an identity matrix except for the

top six rows that corresponding to the six DoFs of the

floating base which are zero. JT

i is the Jacobian matrix

for the ith contact point. We simplify the friction cone

constraints with box constraints. We call the first constraint

equation “contact constraints” and the second “equilibrium



Fig. 4: An illustrative weighted graph. The green bubbles are

optimal robot poses for each phase. The optimal sequence

of robot poses is on the shortest path of the weighted graph,

for example, the bold solid line.

constraints”, hereafter. Because this nonlinear optimization

problem has sparse gradients, we solved it using SNOPT

[15].

However, without a ’good’ nominal pose, we find this

NLP is still hard to solve using SNOPT. Instead of taking

joint torques as optimization variables, we remove them from

this NLP and optimize q and fi first, namely, only use the

top six equations corresponding to the floating base in the

equilibrium constraints. After optimization, we calculate τ

according to the rest of the equations in the equilibrium

constraints to see whether they are within torque limits. Most

of the time, the resultant τ are within their limits. If not, we

modify the pose cost function and re-optimize. For example,

we penalize the pitch angle of the torso in order to reduce

the actuation torque of the torso back joint.

For collision avoidance, we add geometry costs to the

pose cost with special attention to the knees, the elbows and

the chest because these are the parts most likely to have

collision with the car. We use a smooth hinge-like function

to steer these body parts away from collisions. The hinge-

like function is zero for all positive distances and greater

than zero for all negative distances and grows quadratically:

r(x) =

{

0 x ≥ 0
x2 x < 0

(2)

We also add a shape cost to the pose cost, such as a cost

on orientations of the upper body, the pelvis, the feet and

the deviation from the nominal pose. The use of nominal

poses and shape costs bias Pose Optimization towards natural

poses.

There are several ways to get nominal poses. For example,

it can be done by measuring the joint angles of a human

demonstrator or placing the Atlas robot in the car. One

efficient way that we used is to select a reasonable pose

through an interactive User Interface we have developed as

shown in Fig. 3. For a better result, multiple nominal poses

can be used, which in general results in different poses after

Pose Optimization.

2) Pose Sequence Optimization: To enforce the necessary

condition, we define a connectivity cost between two succes-

sive robot poses, q and q′, as the sum of 1) the penalty on

the displacement of specified contact points on the body and

2) the penalty on the displacement of all joint angles:

Cc(q, q
′) = w1

(

∑

i

||pi(q)− pi(q
′)||2

)

+ w2||B(q − q′)||2

(3)

where pi is the ith specified contact point on the body and

B is the same selection matrix as in Eq. (1).

We construct a weighted graph as shown in Fig 4 where

the nodes are optimal robot poses associated with a pose

cost Cp and edges are associated with a connectivity cost

Cc. Dynamic Programming provides an efficient way to find

the ’shortest’ path (a path with the minimal total cost) among

these nodes [16]. To take advantage of parallel computing,

we use a value iteration method and the value update rule is

given by:

V (q) = Cp(q) + min
q′

{

Cc(q, q
′) + V (q′)

}

, (4)

where V (q) is the value associate to robot pose q. Since all

nodes have the same update rule, we update all nodes in

parallel until their values converge.

Given pose q, the next adjacent pose q′ in the optimal pose

sequence is given by

q′ = argmin
q′

Cc(q, q
′) + V (q′). (5)

B. Full-body Control

Fig. 5: Overview of the online car egress controller. Green

boxes are user input data. Yellow boxes are procedures. Blue

boxes are intermediate data.

The structure of the online full body controller is shown

in Fig. 5. The kernal is an on-line pose optimization solver.

It takes the joint position limits as inequality constraints and

calculates robot pose change rate q̇ by solving a Quadratic

Programming problem:

minimize
q̇

∑

i

wi||Ji(q)q̇ − kcp(xdi
− xi)− kcd(ẋdi

− ẋi)||
2

+ wd||Bq̇||2

subject to qmin ≤ q̇∆T + q ≤ qmax

(6)

where Ji(q) is the Jacobian matrix, xdi
and xi is the desired

and the calculated vector of body point position or joint



angles, and B is the selection matrix. The desired joint angles

are derived from the interpolation of the offline generated

optimal pose sequence given by II-A.2. The output robot

pose is given by the integration of the calculated robot pose

change rate:

q = q + q̇∆T, (7)

where ∆T is the control cycle period. The joint parameters

are given by θd = Bq and θ̇d = Bq̇, where B is the selection

matrix.

The hydraulic servo valves are controlled by on-board

servo valve controllers that read sensor data and update

the valve commands at 1kHz. The servo valve controllers

compute valve commands, cmd, according to the following

equation:

cmd = Kp(θd − θ) +Kd(θ̇d − θ̇) +Kf (τd − τ), (8)

where Kp is the gain matrix for joint angles, Kd is the gain

matrix for joint angular velocities, and Kf is the gain matrix

for joint actuation torques. For most of the time, we use PD

control for all joints, namely, Kf is zero. In order to get soft

touchdown of a foot, we first tilt the foot up, and then set

the desired ankle torques to be zero and the corresponding

gains in Kf to be non zero before touchdown. This results

in soft touchdown and assures the foot is compliant with the

ground surface.

The state estimator for the pelvis position and velocity

is based on [17]. For the Atlas robot, there is a six-axis

inertial measurement unit (IMU) attached to the pelvis link.

The IMU measures angular velocity and linear acceleration,

and it also provides an estimate of the pelvis orientation

in the world frame. We use the orientation estimate from

the IMU without modification. The pelvis position and

velocity estimator is a multiple model Kalman filter based

on reference points, namely, points that are considered to

be stationary in the world frame. We design a steady-state

Kalman filter for three candidate reference points, which are

the left toe, the right toe and the pelvis, for the car egress

task. Our heuristic to choose which contact point is stationary

is as follows. When the total upright contact forces on both

feet is less than half the total weight of the robot, we use

the pelvis as the reference point. Otherwise, we use the toe

with a larger upright contact force as the reference point.

The overall egress controller is a linear state machine and

progresses state to state except for abnormal situations. So

far, situation awareness is done by the operator. We installed

a webcam on each knee, through which the operator is able to

know the relative position of each foot w.r.t. the car and can

change the lifting foot’s trajectory on the fly. The operator

can also look through the front camera to know about the

relative position of the chest w.r.t. the dashboard and a

horizontal bar we installed. The camera is automatically

selected based on the state. The UI also shows the robot

pose tracking which allows the user to be aware of abnormal

situations and determine whether to intervene by manually

controlling the position/orientation of a specific body part,

such as the hip.

III. RESULTS

We provided several mechanical aids for egress in the

DRC. Because Atlas was too big to sit behind the steering

wheel, it had to exit the car from the passenger side, so we

extended the accelerator pedal, which then became another

obstacle the robot couldn’t see during egress. Because of

the kinematic limitations the Atlas robot has, such as the

leg lengths, teams using the Atlas for egress installed an

egress platform, such as Team MIT, Team IHMC, Team

TRAC LABS, and Team WPI-CMU. One exception is that

Team TROOPER had their robot slide out of the vehicle

on pivoting metal rails. We installed a jig in the place of a

seat cushion to fix the hip in order to increase repeatability

and reliability, as the bottom of the pelvis was rigid, small,

and had little friction with our hard seat, so the robot could

easily slip and rotate. We also installed a horizontal wooden

bar on top of the dashboard to replace the support a car

door (which was missing) would have provided and provide

additional contact opportunities during the entire behavior.

We derive the dynamics/kinematics parameters of the Atlas

robot from its Gazebo model [18] and parameters of the

car based on its modification. We then use SDFAST [19]

to generate the dynamics model of the robot for offline and

online pose optimization.

After the driving task, the robot needs to move from the

final pose for driving to the initial pose for car egress. This is

done by tracking robot joint trajectories. Because the robot

always starts from the same location inside the car because

of the seat jig, this open-loop control is very reliable.

Starting from the initial pose of Phase 0, we generate poses

for Phase 1) right foot out with contacts on the hip, both feet

and both wrists; Phase 2) stand up inside with contacts on

the chest, both feet and both wrists; Phase 3) move right

inside with contacts on the chest, both feet and both arms;

Phase 4) left foot out with contacts on the chest, both feet,

and both arms; and Phase 5) stand up with contacts on both

feet. We optimize the placement of the right toe by sampling

contact locations in a 0.2× 0.2 square meters’ region on the

egress platform for Phase 1-4. The pose costs, Cp, for Phase

1-4 are the same. It penalizes the displacement of the upper

torso orientation, the pelvis orientation, feet orientation, and

joint angles from the nominal pose. It also penalizes the

external forces on the hands. The geometry costs for Phases

1-4 limit the left knee’s position in the forward direction and

the elbow’s position in downwards direction. The result of

Pose Optimization for each phase is shown in Fig. 6. For

pose sequence optimization, w1 is 104 and w2 is 101. After

value iterations of Dynamic Programming, the optimal pose

sequence is shown in Fig. 7.

For egress control, wd is 0.005 and others weights and

gains used by online pose optimization are listed in Table I.

We designed a swing trajectory and soft touchdown control

for the right foot for the transition from Phase 0 to Phase 1;

right foot rotation control (toe down, rotate, toe up) at the end

of Phase 2; a swing trajectory and soft touchdown control

for the left foot for the transition from Phase 3 to Phase



(a) Phase 0 (b) Phase 1

(c) Phase 2 (d) Phase 3

(e) Phase 4 (f) Phase 5

Fig. 6: Optimal poses of each phase. Figs. 6a and 6f show the

initial and the final robot pose. For Phases6b-6e, 50 candidate

contact locations for the right toe are sampled and 50 robot

poses are generated (10 of which are shown).

TABLE I: Weights and gains used by online pose optimiza-

tion

w k
c
p k

c
d

joint angle 0.05 2.0 0.9
pelvis position 0.05 4.0 0.9
foot position 500.0 4.0 0.9
hand position 50.0 4.0 0.9
com position 5.0 2.0 0.9
torso orientation 500.0 2.0 0.0

4; and a swing trajectory for the right foot and a transition

motion to remove the chest contact at the end of Phase 4.

We use a 3-axis force/torque sensor on each foot to measure

upward ground reaction forces. The online optimization runs

at 1000 Hz for real-time control and the sensors are sampled

at the same frequency. To accommodate uncertainties during

Fig. 7: The optimal pose sequence after value iterations of

Dynamic Programming.

the competition, the controller allows the operator to adjust

the right foot position before it gets out of the car and the

left foot position before it lands on the egress platform based

on video feedback from the knee cameras.

The robot pose tracking result from the DRC Finals on

day 1 is shown in Figs. 8 and 9. The experiment video can

be found at [20].

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we combine an offline robot pose se-

quence/contact location optimization for motion planning

and an online robot pose optimization for full-body control.

The former takes the task-level goal into account and finds

an optimal sequence of static robot poses as well as contact

locations. The latter takes the optimal sequence as input

and adapts the plan according to sensor feedback and user

inputs. The proposed approach can be applied to contact-

rich full-body behaviors. Particularly, we presented car egress

task results from the DRC Finals. The offline generated

robot poses steer the online pose optimization away from

singularities and simplify its cost functions. The online

robot pose optimization enables us to accommodate model

errors and uncertainties. As a result, we can achieve reliable

performance. This approach worked four out of four times

during the battery test, DRC Finals rehearsal, day 1, and

day 2. It also worked 8 out of 10 times in the last 10 tests

we did right before the DRC Finals (one failed because of

deformation of the chest plate and the other failed because

of an incorrect installation of the horizontal bar).

For contact-rich full-body behaviors, most of the time it

is hard to avoid unexpected collisions. In our approach, we

intentionally add more contacts, such as contacts on the

chest and the arms, to enlarge the stable margin, which

enables us to achieve statically stable equilibrium all the

time. Both IHMC and MIT added a handle to the car within

easy reach of the robot, but their robots did not use it to

get out of the car. During our car egress task, unexpected

collisions occurred between the left knee, the left foot and the

car, however, our controller accommodated these unexpected

collisions well. For us, more contacts provided more stability.



(a) frame 0 (b) frame 1 (c) frame 2 (d) frame 3 (e) frame 4

(f) frame 5 (g) frame 6 (h) frame 7 (i) frame 8 (j) frame 9

Fig. 8: Robot pose tracking result from the DRC Finals on day 1. Frames 0-4 show the Atlas robot moved from the final

pose of the driving task to the initial pose of the car egress task. Frames 4-9 show the robot pose tracking result of Phases

0-5 in Fig. 7.

Fig. 9: Robot pose tracking result in term of the hip position

from the DRC Finals on day 1. The six vertical lines from

the left to the right correspond to the robot poses of Phase 0-

5, respectively. The X axis is the forward direction, Y points

to the robot’s left, and Z points upward. The solid lines are

from state estimation and the dashed lines are desired values

from the controller.
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