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Abstract— This paper presents a standing balance controller
that explicitly handles pushes. We employ a library of optimal
trajectories and the neighboring optimal control method to
generate local approximations to the optimal control. We take
advantage of a parametric nonlinear optimization method,
SNOPT, to generate initial trajectories and then use Differential
Dynamic Programming (DDP) to further refine them and get
their neighboring optimal control. A library generation method
is proposed, which keeps the trajectory library to a reasonable
size. We compare the proposed controller with an optimal
controller and an LQR based gain scheduling controller using
the same optimization criterion. Simulation results demonstrate
the performance of the proposed method.

I. INTRODUCTION

Humanoid robots are expected to interact with humans
and complex unstructured environments, so unexpected per-
turbations, such as collisions with people or moving olgject
are inevitable. This paper focuses on balance control gurin
upright stance with unexpected pushes. Fig. 1. Two-link robot model.

Studies of human standing balance have identified two

discrete strategies [1]. One is the ankle strategy, in which

all joints except for the ankle are fixed and torque about th%imensional pro?'em_s [12]. Differential Dynamic Program—
ing (DDP), which is a second order gradient technique

ankle joint is used to compensate for the perturbation. THB _ S i h iciole of
other is the hip strategy, in which torque about the hip jointo"  trajectory optimization [13], applies the principle o
timality in the neighborhood of a nominal trajectory. 3hi

is used to accelerate the torso and move the Center of M o . : )
(CoM). If the perturbation is very large, a step has to b@l ows the coefficients of a linear or quadratic expansion
f the value function to be computed along the trajectory.

taken [2], [3]. In this paper, only balance without steppin - i
hese coefficients may then be used to compute an improved

is addressed. ) o .
Bio-mechanically motivated controllers, such as [4], an#rajectory and a local approximation to the optimal control

intuitive controller designs, such [5], [6] have been stadi '@W IN ItS I”f'gggorzooda WT“|Ch Cfir:l b(\eNusetlj( to OIcompute
In [7], [8], optimal control and state estimation is used {@n optima ree 6:.C control law [. ] ehta:je advantage
explain selection of control strategies used by humans. Tlﬁ)é_ _pararr_letrlc_non Inear programming methods to generate
system is linearized and Linear Quadratic Regulators aggmal trajectories, which are then refined by DDP to progluc

designed for each perturbation. A form of gain schedulin cal control_ laws and more optimal trajectories.
is employed to account for nonlinearities caused by control Most previous \_N(_)rk assumes t_hat pushes are Instantaneous
and bio-mechanical constraints. and change the joint velocities instantaneously. In practi

We use a trajectory library [9] to represent an optimal Cont_he pushes may last for a while. The proposed controller can

troller. In [10], it was shown that multiple balance recover handle instantaneous and contlpuous pushes. .
strategies can be generated by a single optimizationicriter '€ rest of the paper is organized as follows. In section Ii,
For nonlinear systems, Dynamic Programming (DP) provide@e rpbot model_and the opumlza_tlon cr|_ter|on are proposed
a way to find globally optimal control laws. But for high Sect!on Il describes the neighboring optimal control melth
dimensional systems, such as a humanoid robot, the comection IV proposes the balance controller and the optimal
putation and even the storage of nonlinear feedback laf@Jectory library generation method. Simulation resats
becomes difficult [11]. Parametric nonlinear programmingroVided in section V to demonstrate the validity and the
methods, such as SQP (Sequential Quadratic Programmina?,rforman‘?e of the p_ropose_d method. Conclusions and future
have been used to solve trajectory optimization for finitd/Ork are discussed in Section VI.
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TABLE | S A

X, p,f
PARAMETERS OF THE ROBOT MODEL %» Choose Trajectory
Trajectory

L (m) 0.661 l2 (m) 0.653 State and Push

liem (M) 0.430 lacm (M) 0.141 Estimator ‘ Find Nearest Neighbor ‘

m1 (KQ) 19.474 ma (Kg) 29.492 —

Mol; (Kg.m?) | 0.696 | Mol (Kg.m?) | 1.03356 f *X,u,K
‘ Sensors ‘ ‘ u=u- K()A( -X) ‘

| § .
Table I, wherd,.,, andl,.,,, are the distances from the center ‘ — * ‘
(o] e]0)

of mass (CoM) of each link to the joint below, and Mol
and Mok are the momentum of inertia of each link about ) ) )
its CoM. The ankle angle is bounded by.52 < 6, < 0.79 Fig. 2. Standing balance controller architecture.
radians. The hip angle is bounded by2.18 < 6, < 0.52
radians.f, = 0 and 6, = 0 is upright. The ankle velocity
is bounded by—4.6 < 0, < 4.6 radians/second. The hip
velocity is bounded by-7.7 < 6, < 7.7 radians/second.
The maximum hip torque ist157 Newton-meters. Ankle u(x) =1 - K(x - ), (6)
torque is limited to prevent the foot from tilting. We use a ) . )
symmetric foot 0.2 meters long in our model. Assuming thaf/herex is the closest state on the optimal trajectory to the
in standing the center of pressure is at the center of the fo&Urrent statex. u and K are the optimal control and the
then the maximum ankle torque 850 Newton-meters. A feedback gain matrix corresponding %o
horizontal push is applied on some point of a link, whgre
is the size of push and is the distance from the point of
action to the joint below.
The one step optimization criterion is the weighted sum ot Controller Architecture
the squared deviations of the current state from the desiredThe standing balance controller is shown in Fig. 2. In each
state and the squared joint torques: time step, the state estimate,the push size estimatg, and
T T the push location estimaté,are calculated. During balance
Lx,u) = T(x = xa)” Q(x = xq) + Tuw" Ru, (1) control, a trajectory is chosen according to the distance,
where T is the time step of the simulatio.01s), x” = (p,7)W(p,7)T, whereW a diagonal weighting matrix. The
(04,0n,04,0,) is the current staten” = (r,,75) is the range ofp is about—80 to +80 and the range of is
control vector,x, is the desired state, which is the statichetween 0 and 0.653, W is diag(1, 100) currently. Given
equilibrium state for a specified push, a@dandR are both the optimal trajectory and its neighboring optimal control
currently identity matrices with appropriate dimensions. feedback gains, we get a local linear approximation to the
optimal control law in its neighborhood. According to the
current state estimatek, the closest state on the optimal
Given the discrete time dynamics of the robot: trajectory, X, along with the corresponding contrai, and
_ the feedback gain matrid¥< are used. The state distance is
x(k +1) = £(x(k), u(k), p.7), 2) given byx” Dx, whereD is diag(1,1,0.1,0.1) currently. The
where p is the push sizer is the push location; and the output of the controller is thus given by:
optimal value function _

u=1a-K(x-—x). @)
V(x) = L(x,u") + V(f(x,u")), ®) . . : : . :
B. Trajectory Library on a Uniform Grid of Initial Condi-
where u* is the optimal control for the statex. The tions
neighboring optimal control is given by [15]:

optimal trajectory. Therefore, a closed-loop feedbackimbn
solution can be given by:

IV. BALANCE CONTROLLER USING ATRAJECTORY
LIBRARY

1. NEIGHBORING OPTIMAL CONTROL

Differential Dynamic Programming is a second order

u(k) =u*(k) - K*(k)(x(k) — x*(k)) (4) gradient method and it can converge to a better solution if

the starting trajectory is good, otherwise the convergésce
and du* (x(k)) slow or it may even fail. Parametric nonlinear programming
K" (k) = o) e (5)  methods have been used to solve trajectory optimization

problems [12]. We find they are generally more robust in
In order to computeK*, the partial derivatived/,, = %—‘; terms of finding a solution than DDP.
andV,, = %27‘5 have to be computed along the trajectory. SNOPT is a general-purpose system for constrained op-
Given an optimal trajectory, one can integr&fék), V,.(k), timization using a sparse sequential quadratic programmin
and V.. (k) backward in time starting from the end of the(SQP) method [16]. We use it to generate starting trajezsori
trajectory [13]. for different conditions. For standing balance control, a
The neighboring optimal control law is a local linearselection of initial conditions is considered. For constan
model for the optimal policy in the neighborhood of thepushes, the initial joint angles and velocities are all zero
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D. Online Sate and Push Estimation

We have no sensor for the joint velocities, push size,
and push location, which have to be estimated. We employ
a new state variabley” = (0,,05,04,60,,p,7) and an
observationz” = (0,01, f., f.), whered, andd;, are noisy
measurements of the ankle angle and the hip anglend
f. are noisy measurements of the ankle forces, as shown
in Fig. 1. Therefore, the state transition and the obsarmati
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The push location on torso(m)

0.1 model are given by:
oo -50 0 50 100 y(k+1) = g(y(k),ulk)) +w (8)
Trepusheee a(k) = h(y(k).u(k) +v (©)
Fig. 3. The lookup table for constant pushes on the torso. w ~ N(0,S) v~ N(0,T) (10)
[£(x(k), u(k), p(k),(k))
_ _ gly,u) = p(k) (11)
The push sizep, and the push location;, are not zero. (k)
For instantaneous pushes, the initial joint velocities are - 0
not zero. The initial joint angles, the push size, and the 9“
push location are all zero. For constant pushes, the robot h(y,u) = £l (k)h u(k) | (12)
eventually leans into the pushes and attains zero jointieorg fx(z(k:)’ u(k))

In order to balance after the constant pushes are removed,
initial conditions with nonzero joint angles should also bevheref(.) is the dynamics of the robot, the noise terms
considered. For each type of push, initial conditions arend v are uncorrelated$ and T are covariance matrices.
generated on a uniform grid. Trajectories are optimized bRiag(0.012, 0.01%, 0.012, 0.01%, 1, 0.01%) and diag(.01?,
SNOPT for each initial condition. For example, we use 10.012, 0.01%, 0.01%) are used foS and T, respectively. The
Newtons as the push magnitude step size, 0.3 meters as $itgte transition model and the observation model are both
push location step size, and generate starting trajestorie nonlinear, so the Extended Kalman Filter is employed [17].

a uniform grid for constant pushes on the torso. The Extended Kalman Filter linearizes the nonlinear state
We use DDP to refine the trajectories produced by SNOPtTransition model and the observation model as

and store the trajectories and their feedback gain matiices Og

the library. Given a good starting trajectory, DDP can find a F(k) = Jy b1 b1 (1) (13)

better solution rapidly.

h
HR) = o (a4
C. Trajectory Library on an Adaptive Grid of Initial Condi- Y Iy (klk—1),u(k-1)
tions To predict the next state before measurements are taken:
It is difficult to determine step sizes during the trajectory yklk—1) = gFk—1/k—1),u(k—1)) (15)
library generation on a uniform grid of initial conditionis$. Pklk—1) = F(k)Pk—1lk—1)FT(k)+S (16)

step sizes are too large, the final controller's performasce
bad. But if they are too small, the size of trajectory library To update the state after measurements are taken:
becomes too big. We propose a trajectory library on an

adaptive grid of initial conditions. Zerr = 2(k) —h(y(k[k —1),u(k — 1)) (17)

In order to store trajectories on an adaptive grid of initial K (k) = P(k|lk — )H" (HP(k|k — 1)H" + T)"" (18)
conditions, optimal trajectories are generated and thaedt ¢ (k|k) = §(k|k — 1) + K(k)zerr 19)
into a library incrementally based on performance. We ha"eP(k|k) = (I- K(k)H)P(klk — 1), (20)

developed an adaptive grid formulation which adjusts the

cell boundaries so that the deviation from the optimal valuehereK is the Kalman gain matrix ank is the covariance
is less than a performance bound. For example, we use 100@trix for the state estimation.

as the performance bound and generate trajectories toéhand|
constant pushes on the torso. The final library has only 30 . .
trajectories. The result is shown as Fig. 3, in which each In the following simulationsf,, 65, 6., andf;, denote the
block defines a control region of one optimal trajectorylrue values of ankle angle, hip angle, f}”“? V§|°City- z?md hi
During balance control, a trajectory is chosen according teelocity. Their estimates are denoted &y, 05, 6., andf,.

the lookup table shown in Fig. 3. The middle large regiod,, ), 0,, andfy,, 7,, 7, are elements of the closest state
uses the optimal trajectory for a zero push, which is aand its corresponding controls found in the trajectorydilr
LQR controller since the trajectory remains at the standing, and r;, are applied torques at the ankle joint and the hip
equilibrium. joint.

V. SIMULATION RESULTS
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Fig. 4. The robot under the constant forward push at the héd@ dlewtons. The frames are taken in intervals of 0.3 seconds.

In the first simulation, a constant push of 42 Newtons at
the head in the forward direction is applied. There is no
trajectory for exactly the same push in the library and the
optimal trajectory for a constant push of 39.5 Newtons at
the head is selected. As shown in Figs. 4 and 5, the robot
employs the hip torque to accelerate the torso, bends fdrwar
quickly, and then it leans backward into the push in order
to use gravity to balance the push. Finally, all joint torgue
tend to zero. As shown in Figs. 6, 7, and 8, the state and
push estimates quickly approach the true values.

In the second simulation, a large short push at the head of ‘ ‘ ‘ ‘
50 Newtons in the forward direction lasting 0.5 seconds is 0 ! 2 lime () 4 °
tested. As shown in Figs. 9, 10, 11, and 12, the robot uses
the hip torque to accelerate the torso, bends forward, andFig. 6. The joint angles for 42 Newtons forward push at thedhea
finally recovers its posture to be upright. It is also shown
that the state and push estimates quickly approach the true
values. In Fig. 12, the push location estimate is meanisgles
when the push size is zero.

The robustness of the proposed controller is tested with
a sequence of random pushes. The test push size sequence
is 15, 45, and 25 Newtons. Trajectories for constant pushes
of 20, 39.5, and 26 Newtons are used. As shown in Figs.
13, 14, 15, and 16, for pushes of sizes and locations not in
the library and changing with time, the robot can still keep
balance.

For different push sizes and push locations on the torso,
the performance of the proposed controller is compared with : 5 5
that of the optimal controller using the same optimization Time (s)
criterion. As shown in Fig. 17, the performance of the
proposed controller is close to that of the optimal conéroll Fig. 7. The joint velocities for 42 Newtons forward push & tiead.
when there are trajectories in the library for the pushes tha
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Fig. 10. Joint angles for the short forward push at head of B@ithins, Fig. 12.

: Push size and location estimates for the short farwaish at
lasting 0.5 seconds.

head of 50 Newtons, lasting 0.5 seconds.

are close to the pushes applied. It becomes worse when {3€generate starting trajectories for DDP refinement, which
applied pushes are far from what is in the library. Becausgskes the convergence rapid.

the trajectory library is generated based on performamee, t The proposed trajectory library generation method saves

performance degradation is bounded. computation. It makes the final library compact but also
We have also designed a gain scheduling controller basggisfy the performance requirements. The trajectorias an
on Linear Quadratic Regulators (LQR). It linearizes thgnys the linear approximation to the optimal control law can

system about the equilibrium state for each push size apf 5ccessed effectively using a lookup table, which make the
push location. LQR controllers are then designed accordwtgoposed controller applicable for real-time control.

to the same optimization criterion. According to the push |4 oyr future work, robots with more links will be studied.
size and the push location, an appropriate LQR controller is,, example, the 'squat strategy’ can be generated if thetrob
used. This gain scheduling controller falls down for consta 1,55 knee joints. Actually implementing this algorithm on a
forward pushes at the head of 36 Newtons. In contrast, thgpot s also expected. This will require dealing with floor
controller proposed here is able to handle constant forwa%mpliance and coordinating both legs and feet. Finally, we
pushes up to 55 Newtons. would like to extend our model to include a full 3D robot.
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