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Abstract. We informally review our approach to using trajectory optimization to
accelerate dynamic programming. Dynamic programming provides a way to design
globally optimal control laws for nonlinear systems. However, the curse of dimen-
sionality, the exponential dependence of memory and computation resources needed
on the dimensionality of the state and control, limits the application of dynamic pro-
gramming in practice. We explore trajectory-based dynamic programming, which
combines many local optimizations to accelerate the global optimization of dynamic
programming. We are able to solve problems with less resources than grid-based
approaches, and to solve problems we couldn’t solve before using tabular or global
function approximation approaches.

1 What Is Dynamic Programming?

Dynamic programming provides a way to find globally optimal control laws (poli-
cies), u = u(x), which give the appropriate action u for any state x [1, 2]. Dynamic
programming takes as input a one step cost (a.k.a. “reward” or “loss”) function and
the dynamics of the problem to be optimized. This paper focuses on offline planning
of nonlinear control laws for control problems with continuous states and actions,
deterministic time invariant discrete time dynamics xk+1 = f(xk,uk), and a time
invariant one step cost function L(x,u), so we use discrete time dynamic program-
ming. We are focusing on steady state policies and thus an infinite time horizon.
Action vectors are typically limited to a finite volume set.
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One approach to dynamic programming is to approximate the value function
V (x) (the optimal total future cost from each state V (x) = minuk ∑∞

k=0 L(xk,uk)), by
repeatedly solving the Bellman equation V (x) = minu(L(x,u)+V (f(x,u))) at sam-
pled states x j until the value function estimates have converged. Typically the value
function and control law are represented on a regular grid. Some type of interpola-
tion is used to approximate these functions within each grid cell. If each dimension
of the state and action is represented with a resolution R, and the dimensionality of
the state is dx and that of the action is du, the computational cost of the conventional
approach is proportional to Rdx ×Rdu and the memory cost is proportional to Rdx .
This exponential dependence of cost on dimensionality is known as the Curse of
Dimensionality [1].

An example problem: We use one link pendulum swingup as an example problem
to provide the reader with a visualizable example of a nonlinear control law and
corresponding value function. In one link pendulum swingup a motor at the base
of the pendulum swings a rigid arm from the downward stable equilibrium to the
upright unstable equilibrium and balances the arm there (Fig. 1). What makes this
challenging is that a one step cost function penalizes the amount of torque used and
the deviation of the current angle from the goal. The controller must try to minimize
the total cost of the trajectory. The one step cost function for this example is a
weighted sum of the squared angle errors (θ : difference between current angle and
the goal angle) and the squared torques τ: L(x,u) = 0.1θ 2 + τ2 where 0.1 weights
the angle error relative to the torque penalty. There are no costs associated with the
joint velocity. The uniform density link has a mass m of 1kg, length l of 1m, and
width of 0.1m. The dynamics are given by:

θ̈ =
(τ + 0.5m ·g · l · sin(θ ))

I
(1)

where g is the gravitational constant 9.81 and I is the moment of inertia about the
hinge. The continuous time dynamics are discretized with a time step of 0.01s using
Euler’s method as discrete time dynamics are more convenient for system identi-
fication and computer-based discrete time control. Because the dynamics and cost
function are time invariant, there is a steady state control law and value function
(Fig. 2). Because we keep track of the direction of the error and multiple rotations
around the hinge, there is a unique optimal trajectory. In general there may be mul-
tiple solutions with equal optimal costs. Dynamic programming converges to one of
the globally optimal solutions.

Fig. 1 Configurations from the simulated one link pendulum swingup optimal trajectory
every half second and at the end of the trajectory. The pendulum starts in the downward
position (left) and swings up in rightward configurations.
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Fig. 2 The value function and policy for a one link pendulum swingup. The optimal trajec-
tory is shown as a line in the value function and policy plots. The value function is cut off
above 20 so we can see the details of the part of the value function that determines the optimal
trajectory. The goal is the state (0,0), upright and not moving.

Representing trajectories explicitly to achieve representational sparseness:
A technique to accelerate dynamic programming is to optimize more than one step
at a time. Larson proposed modifying the Bellman equation to allow multiple time
steps and multiple evaluations of the one step cost and dynamics before evaluating
the value function on the right hand side [3]:

V (x0) = min
u0,N−1

((
N−1

∑
0

L(xi,ui))+V(xN)) (2)

In a grid-based approximation with multilinear interpolation, V (x) depends on the
value estimates at all the surrounding nodes. Larson’s goal was to ensure that V (xN)
on the right hand side of the Bellman equation did not depend on the value be-
ing updated (V (x0)) by ensuring that the trajectory ended far enough away from
its start in his State Increment Dynamic Programming. We have extended this idea
by running trajectories a variety of distances including all the way to the goal. To
help show that representing trajectories explicitly allows greater sparseness in dy-
namic programming, we show its effect on the one link swingup task. Fig. 3-top-left
shows Larson’s State Increment Dynamic Programming procedure on a 10x10 grid
applied to this problem. In Larson’s approach trajectories are run until they exit a
2x2 volume and the start value has no effect on the end value when multi-linear
interpolation is used on the grid of values. Fig. 3-top-right shows a set of optimized
trajectories that run all the way to the goal from a similar grid. The flow from state to
state is clearly indicated. When the resolution is greatly reduced, the State Increment
Dynamic Programming approach fails (Fig. 3-bottom-left), while the full trajectory-
based approach is more robust to the sparse representation (Fig. 3-bottom-right) and
still generates globally optimal trajectories. This work raises the question: “What
should the length of the trajectory be?” Larson used a distance threshold. We used
reaching the goal (attaining a point with zero future costs) as a threshold. A time
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Fig. 3 Right: Different approaches to computing and representing the value function for one
link swingup. On the left is the State Increment Dynamic Programming Approach of Larson.
On the right trajectories are run all the way to the goal. The plots are of phase space with
angles on the x axis and angular velocities on the y axis.

threshold could also be used. What distance or time threshold value should be used?
Should it be the same throughout the space? Another question is how to efficiently
optimize the sequence of actions in Eq. 2. We use local trajectory optimization to
find an optimal sequence of actions.

2 Trajectory-Based Dynamic Programming

Our approach modifies (and complements) existing approximate dynamic program-
ming approaches in a number of ways: 1) We approximate the value function and
policy using many local models (quadratic for the value function, linear for the pol-
icy) as shown in Fig. 4. These local models, located at sampled states, help our func-
tion approximators handle sparsely sampled states. A nearest neighbor approach is
taken to determine which local model should be used to predict the value and policy
for a particular state. 2) We use trajectory segments rather than single time steps
to perform Bellman updates (black lines in Fig. 4-Right). 3) After using either the
approximated policy or value function to initialize the trajectory segment, we use
trajectory optimization to directly optimize the sequence of actions u0,N−1 and the
corresponding states x1,N . 4) Local models of the value function and policy are
created as a byproduct of our trajectory optimization process. 5) Local models ex-
change information to ensure the Bellman equation is satisfied everywhere and the
value function and policy are globally optimal. 6) We also use trajectory optimiza-
tion on each query to refine the predicted values and actions. 7) We are exploring
using adaptive grids. Fig. 4-Right shows a randomly generated set of states superim-
posed on a contour plot of the value function for one link swingup, and the optimized
trajectories used to generate locally quadratic value function models.

Local models of the value function and policy: We need to represent value func-
tions and policies sparsely. We use a hybrid tabular and parametric approach: para-
metric local models of the value function and policy are represented at sampled
locations. This representation is similar to using many Taylor series approximations
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Fig. 4 Left: Example of a local approximation of a 1D value function using three quadratic
models. Right: Random states (dots) used to plan one link swingup, superimposed on a con-
tour map of the value function. Optimized trajectories (black lines) are shown starting from
the random states.

of a function at different points. At each sampled state xp the local quadratic model
for the value function is:

V p(x) =V p
0 +Vp

x x̂+
1
2

x̂TVp
xxx̂ (3)

where x̂ = x− xp is the vector from the sampled state xp to the query x, V p
0 is the

constant term, Vp
x is the first derivative with respect to state at xp, and Vp

xx is the
second spatial derivative at xp. The local linear model for the policy is:

up(x) = up
0 −Kpx̂ (4)

where up
0 is the constant term, and Kp is the first derivative of the local policy with

respect to state at xp and also the gain matrix for a local linear controller. V0, Vx,
Vxx, and K are stored with each sampled state.

Creating the local models: These local models are created using Differential Dy-
namic Programming (DDP) [4, 5, 6, 7]. This local trajectory optimization process is
similar to linear quadratic regulator design in that a value function and policy is pro-
duced. In DDP, value function and policy models are produced at each point along
a trajectory. Suppose at a time step i we have 1) a local second order Taylor series
approximation of the optimal value function: V i(x) = V i

0 +Vi
xx̂+ 1

2 x̂TVi
xxx̂ where

x̂ = x−xi. 2) a local second order Taylor series approximation of the robot dynam-
ics (fi

x and fi
u correspond to A and B of the linear plant model used in linear quadratic

regulator (LQR) design): fi(x,u) = fi
0 + fi

xx̂ + fi
uû + 1

2 x̂Tfi
xxx̂ + x̂Tfi

xuû + 1
2 ûTfi

uuû
where û= u−ui, and 3) a local second order Taylor series approximation of the one
step cost, which is often known analytically for human specified criteria (Lxx and
Luu correspond to Q and R of LQR design): Li(x,u) = Li

0+Li
xx̂+Li

uû+ 1
2 x̂TLi

xxx̂+
x̂TLi

xuû+ 1
2 ûTLi

uuû
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Given a trajectory, one can integrate the value function and its first and sec-
ond spatial derivatives backwards in time to compute an improved value function
and policy. We utilize the “Q function” notation [35] from reinforcement learning:
Q(x,u) = L(x,u) +V (f(x,u)). The backward sweep takes the following form (in
discrete time):

Qi
x = Li

x +Vi
xfi

x; Qi
u = Li

u +Vi
xfi

u (5)

Qi
xx = Li

xx +Vi
xfi

xx +(fi
x)

TVi
xxfi

x (6)

Qi
ux = Li

ux +Vi
xfi

ux +(fi
u)

TVi
xxfi

x (7)

Qi
uu = Li

uu +Vi
xfi

uu +(fi
u)

TVi
xxfi

u (8)

Δui = (Qi
uu)
−1Qi

u; Ki = (Qi
uu)
−1Qi

ux (9)

Vi−1
x = Qi

x−Qi
uKi; Vi−1

xx = Qi
xx−Qi

xuKi (10)

where subscripts indicate derivatives and superscripts indicate the trajectory index.
After the backward sweep, forward integration can be used to update the trajectory
itself: ui

new = ui−Δui−Ki(xi
new−xi). We note that the cost of this approach grows

at most cubically rather than exponentially with respect to the dimensionality of the
state. We formulate the trajectory optimization with an infinite time horizon so that
the value functions and control laws are time invariant and functions only of state.

Combining greedy local optimizers to perform global optimization: As currently
described, the algorithm finds a locally optimal policy, but not necessarily a globally
optimal policy. However, if the combination of local value function models generate
a global value function that satisfies the Bellman equation everywhere, the resulting
policy and value function are globally optimal [1, 2]. We will refer to violations of
the Bellman equation as “Bellman errors”. We can reduce one step Bellman errors

e =V (x)−min
u
(L(x,u)+V(f(x,u))) (11)

and multi-step Bellman errors

e =V (x0)− min
u0,N−1

((
N−1

∑
0

L(xi,ui))+V(xN)) (12)

by 1) re-optimizing local models that disagree using policies from neighboring lo-
cal models, and 2) adding additional local models in the area of the discrepancies
until Bellman errors are reduced below a threshold everywhere (up to a sampling
resolution). This process does require globally optimizing the one step action u or
multi-step action sequence u0,N−1 for each test. The Bellman error approach be-
comes similar to a standard dynamic programming approach as the resolution be-
comes infinite, and thus inherits the convergence properties of grid-based dynamic
programming [1, 2]. A weaker test which verifies that the value function matches
the current policy assesses the Bellman error for u(x) at each selected state, so no
global minimization is necessary. This test is useful in policy iteration.
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A useful heuristic to detect local optima that does not require a global optimiza-
tion on each test is to enforce continuity of the value function and the policy. This
heuristic often works because a switch from a global optimum to a local optimum
in a policy often shows up as a discontinuity in the policy or value function. Un-
fortunately, often optimal policies and value functions have true discontinuities. As
Fig. 2 shows, value functions can have derivative discontinuities (discontinuities of
the spatial derivatives of the value, see the creases in the figure) at policy discon-
tinuities. In addition, value functions can have discontinuities of the value itself in
complex situations such as when there are multiple goals (zero velocity states that
require no cost to maintain) and it is not possible to reach all goals from each state. A
second heuristic is that optimal trajectories should not normally cross any policy or
value function discontinuities given smooth dynamics and one step cost functions.
However, there are exceptions to this heuristic as well.

Discrepancies between predictions of local value functions can also be used to
guide computational effort and allocate local models. Discrepancies of local poli-
cies can be considered by using the local policies to generate trajectory segments,
and seeing if the cost of the trajectory is accurately predicted by local value func-
tion models. We can enforce continuity of local models by 1) using the policy of
one state of a pair to reoptimize the trajectory of the other state of the pair and vice
versa, and 2) adding more local models in between nearest neighbors that continue
to disagree until the discontinuity is confirmed or eliminated [6]. We also periodi-
cally reoptimize each local model using the policies of other local models. As more
neighboring policies are considered in optimizing any given local model, a wide
range of actions are considered for each state. There are several ways to perform
reoptimization. Each local model could use the policy of a nearest neighbor, or a
randomly chosen neighbor with the distribution being distance dependent, or just
choosing another local model randomly with no consideration of distance. [6] de-
scribes how to follow a policy of another sampled state if its trajectory is stored, or
can be recomputed as needed. We have also explored a different approach that does
not require each sampled state to save its trajectory or recompute it. To “follow”
the policy of another state, we follow the locally linear policy for that state until the
trajectory begins to go away from the state. At that point we switch to following the
globally approximated policy. Since we apply this reoptimization process periodi-
cally with different randomly selected local models, over time we explore using a
wide range of actions from each state. This process is analogously to exploration in
learning and to the global minimization with respect to actions found in the Bellman
equation. This approach is similar to using the method of characteristics to solve par-
tial differential equations [8] and finding value functions for games [9, 10, 11]. We
note that value functions that are discontinuous in known locations, with known pat-
terns, or in a relatively small area can also be handled with approaches that partition
the space into regions with no discontinuities.

Adaptive grids — constant value contours: We have explored a number of adap-
tive grid techniques for trajectory-based dynamic programming. Adaptive grid tech-
niques for solving partial differential equations are useful for dynamic programming
as well [12]. Fig. 5 shows a trajectory-based approach being used to compute a
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Fig. 5 Computing a 1D swingup value function using an adaptive grid. The plots are of
phase space with angles on the x axis and angular velocities on the y axis.
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Fig. 6 Randomly sampled states and trajectories for the one link swingup problem after 10,
20, 30, 40, 50, and 60 states are stored. These figures correspond to Figs. 4:right and 5, with
angle on the x axis and angular velocity on the y axis.

global value function [6, 7]. An adaptive grid of initial conditions are maintained on
a “frontier” of constant value V (x) or cost-to-go. This “frontier” is one dimension
less than the dimensionality of x. Trajectories are optimized from each sample of the
frontier and local models are maintained at each sample. The value function at each
frontier sample is compared with that of nearby points, using the local models for
the value functions and policies. At discrepancies the trajectories are re-optimized
using the value function from the neighboring frontier point. If this fails to resolve
the discrepancy, new frontier points are added at the discrepancy until the discrep-
ancy is below a threshold. Fig. 5 shows the frontier being gradually expanded. Since
each trajectory optimization is independent, these approaches are “embarrassingly”
parallel.

Adaptive grids — randomly sampling states: Fig. 6 shows an adaptive grid ap-
proach based on randomly sampling states, similar to Fig. 5. In this case states are
randomly sampled. If the predicted value V (using the nearest local model) for a
state is too high, it is rejected. If the predicted value is too similar to the cost of an
optimized trajectory, it is rejected. Otherwise it is added to the database of sampled
states, with its local value function and policy models. To generate the initial trajec-
tory for optimization the current approximated policy is used until the goal or a time
limit is reached. In the current implementation this involves finding the sampled
state nearest to the current state in the trajectory and using its locally linear policy
to compute the action on each time step. The trajectory is then locally optimized.

We solve a series of problems by gradually increasing the cost of trajectories
we consider. Each cost threshold generates a volume we consider, and in the most
conservative version of our algorithms, we completely solve each volume before
increasing the cost threshold. More aggresive versions only partially solve each vol-
ume before increasing the cost threshold, and continue to update lower cost nodes
throughout execution.



Trajectory-Based Dynamic Programming 9

Fig. 7 Configurations from the simulated three link pendulum optimal swingup trajectory
every tenth of a second and at the end of the trajectory

We expect the locally optimal policies to be fairly good because we 1) gradually
increase the solved volume (Fig. 6) and 2) use local optimizers. Given local opti-
mization of actions, gradually increasing the solved volume defined by a constant
value contour will result in a globally optimal policy if the boundary of this volume
never touches a non-adjacent section of itself, given reasonable dynamics and one
step cost functions. Fig. 2 and 4 show the creases in the value function (disconti-
nuities in the spatial derivative) and corresponding discontinuities in the policy that
typically result when the constant value contour touches a non-adjacent section of
itself as the limit on acceptable values is increased.

3 Results

In addition to the one link swingup example presented in the introduction, we
present results on two link swingup (4 dimensional state), three link swingup (6
dimensional state), four link balance (8 dimensional state), and 5 link bipedal walk-
ing (10 dimensional state). In the first four cases we used a random adaptive grid
approach [13]. For the one link swingup case, the random state approach found
a globally optimal trajectory (the same trajectory found by our grid based ap-
proaches [14]) after adding only 63 random states. Fig. 4 shows the distribution of
states and their trajectories superimposed on a contour map of the value function for
one link swingup and Fig. 6 shows how the solved volume represented by the sam-
pled states grows. For the two link swingup case, the random state approach finds
what we believe is a globally optimal trajectory (the same trajectory found by our
tabular approaches [14]) after storing an average of 12000 random states, compared
to 100 million states needed by a tabular approach. For the three link swingup case,
the random state approach found a good trajectory after storing less than 22000 ran-
dom states (Fig. 7). We were not able to solve this problem using regular grid-based
approaches with a 4 gigabyte table.
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Fig. 8 Configurations every quarter second from a simulated response to a forward push
(to the right) of 22.5 Newton-seconds. The lower black rectangle indicates the extent of the
symmetric foot.

A simple model of standing balance: We provide results on a standing robot bal-
ancer that is pushed (Fig. 8), to demonstrate that we can apply the approach to sys-
tems with eight dimensional states. This problem is hard because the ankle torque
is quite limited to prevent the foot from tilting and the robot falling. We created
a four link model that included a knee, shoulder, and arm. Each link is modeled
as a thin rod. We model perturbations as horizontal impulses applied to the mid-
dle of the torso. The perturbations instantaneously change the joint velocities from
zero to values appropriate for the perturbation. We assume no slipping or other
change of contact state during the perturbation. Both the allowable states and pos-
sible torques are limited. The one step optimization criterion is a combination of
quadratic penalties on the deviations of the joint angles from their desired positions
(straight up with the arm hanging down), the joint velocities, and the joint torques:
L(x,u) = (θ 2

a + θ 2
k + θ 2

h + θ 2
s )+ (θ̇ 2

a + θ̇ 2
k + θ̇ 2

h + θ̇ 2
s ) + 0.002(τ2

a + τ2
k + τ2

h + τ2
s )

where 0.002 weights the torque penalty relative to the position and velocity errors.
The penalty on joint velocities reduces knee and shoulder oscillations. After dy-
namic programming based on approximately 60,000 sampled states, Fig. 8 shows
the response to the largest perturbations that could be handled in the forward direc-
tion. We have designed a linear quadratic regulator (LQR) controller that optimizes
the same criterion on the four link model, using a linearized dynamic model. For per-
turbations of 17.5 Newton-seconds and higher, the LQR controller falls down, while
the controller presented here is able to handle larger perturbations of 22.5 Newton-
seconds. We were able to generate behavior using optimization that matched human
responses for large perturbations [15, 16]. Interestingly, we found that a single opti-
mization criterion generated multiple strategies (both an ankle and hip strategy, for
example).

We explored trajectory-based control of bipedal walking. We simulated a 5 link
planar robot (2 legs and a torso). We optimized a periodic steady state trajectory
(solid line) and 12 additional optimal trajectory segments starting just after -4 and
10 Newton-seconds perturbations at the hip at different times (Figure 9-left). The
trajectory library was evaluated using perturbations of -10, -6, 6, 16, and 20 Newton-
seconds at the hip (Figure 9-right). The robot successfully recovered from these
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Fig. 9 Trajectory-based dynamic programming applied to bipedal walking. On the left we
show the entries in a trajectory library, and on the right we show trajectories generated from
the trajectory library in response to perturbations. The solid curve is the periodic steady state
trajectory. 2D phase portraits are shown which are projections of the actual 10D trajectories.
We plot the angle (x axis) and angular velocity (y axis) of a line from the hip to a foot.

perturbations. The simulated robot could also walk up and down 5 degree inclines
using this trajectory-based policy generated by optimizing walking on level ground.

4 Related Work

Trajectories: In our approach we use trajectories to provide a more accurate es-
timate of the value of a state. In reinforcement learning “rollout” or simulated
trajectories are often used to provide training data for approximating value func-
tions [17, 18], as well as evaluating expectations in stochastic dynamic program-
ming. Murray et. al. used trajectories to provide estimates of values of a set of initial
states [19]. A number of efforts have been made to use collections of trajectories
to represent policies [3, 6, 7, 20, 21, 22, 23, 24, 25, 26, 27]. [21] created sets of
locally optimized trajectories to handle changes to the system dynamics. NTG uses
trajectory optimization based on trajectory libraries for nonlinear control [28]. [6]
and [7] used information transfer between stored trajectories to form sets of globally
optimized trajectories for control.

Local models: We use local models of the value function and policy. Werbos pro-
posed using local quadratic models of the value function [29]. The use of trajec-
tories and a second order gradient-based trajectory optimization procedure such as
Differential Dynamic Programming (DDP) allows us to use Taylor series-like lo-
cal models of the value function and policy [4, 5]. Similar trajectory optimization
approaches could have been used [30], including robust trajectory optimization
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approaches [31, 32, 33]. An alternative to local value function and policy models are
global parametric models, for example [17, 34, 35]. A difficult problem is choosing
a set of basis functions or features for a global representation. Usually this has to be
done by hand. An advantage of local models is that the choice of basis functions or
features is not as important.

5 Discussion

On what problems will our approach work well? We believe our approach can
discover underlying simplicity in many typical problems. An example of a problem
that appears complex but is actually simple is a problem with linear dynamics and a
quadratic one step cost function. Dynamic programming can be done for such linear
quadratic regulator (LQR) problems even with hundreds of dimensions and it is not
necessary to build a grid of states [36]. The cost of representing the value function
is quadratic in the dimensionality of the state. The cost of performing a “sweep”
or update of the value function is at most cubic in the state dimensionality. Con-
tinuous states and actions are easy to handle. Perhaps many problems, such as the
examples in this paper, have local simplifying characteristics similar to LQR prob-
lems. For example, problems that are only “slightly” nonlinear and have a locally
quadratic cost function may be solvable with quite sparse representations. One goal
of our work is to develop methods that do not immediately build a hugely expensive
representation if it is not necessary, and attempt to harness simple and inexpensive
parallel local planning to solve complex planning problems. Another goal of our
work is to develop methods that can take advantage of situations where only a small
amount of global interaction is necessary to enable local planners capable of solving
local problems to find globally optimal solutions.

Why dynamic programming? To generate a control law or policy, trajectory opti-
mization can be applied to many initial conditions, and the resulting actions can be
interpolated as needed. If trajectory optimization is fast enough it can be done on-
line, as in Receding Horizon Control/Model Predictive Control (RHC/MPC). Why
do we need to deal with dynamic programming and the curse of dimensionality?
Dynamic programming is a global optimizer, while trajectory optimization alone
finds local optima. Often, the local optima found using just trajectory optimization
are not acceptable.

What about state estimation, learning models, and robust policies? We assume
we know the dynamics and one step cost function, and have accurate state esti-
mates. Future work will address simultaneously learning a dynamic model, finding
a robust policy, and performing state estimation with an erroneous partially learned
model [37, 38, 39].

Aren’t there better trajectory optimization methods than DDP? DDP, invented
in the 1960s, is useful because it produces local models of value functions and poli-
cies. It may be the case that newer methods can optimize trajectories faster than
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DDP, and that we can use a combination of methods to achieve our goals. Para-
metric trajectory optimization based on sequential quadratic programming (SQP)
dominates work in aerospace and animation. We have used SQP methods to ini-
tially optimize trajectories, and a final pass of DDP to produce local models of
value functions and policies.

6 Future Work

Future work will optimize aspects and variants of this approach and do a thorough
comparison with alternative approaches. More extensive experimentation will lead
to a clearer understanding of when this approach works well, and how much storage
and computation costs are reduced in general. An interesting but difficult research
question is how sacrificing global optimality would enable finding useful solutions
to bigger problems. Another interesting question is how to combine Receding Hori-
zon Control/Model Predictive Control with a pre-computed value function [40, 41].

From our point of view, the most important question is whether model-based
optimal control of this form can be usefully applied to humanoid robots, where the
dynamics and thus the model depend on a poorly characterized environment as well
as a well characterized robot.

7 Conclusion

We have combined local models and local trajectory optimization to create a promis-
ing approach to practical dynamic programming for robot control problems. New
elements in our work relative to other trajectory library approaches include variable-
length trajectories including trajectories all the way to a goal, using local models of
the value function and policy, and maintaining consistency across local models of
the value function. We are able to solve problems with less resources than grid-based
approaches, and to solve problems we couldn’t solve before using tabular or global
function approximation approaches.
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