Implementation of a Trajectory Library Approach to
Controlling Humanoid Standing Balance

Chenggang Liu and Jianbo Su
Department of Automation
Shanghai Jiaotong University
Shanghai, China
{frankliu, jbsut @sjtu.edu.cn

Abstract—This paper presents a nonlinear controller based — —
on a trajectory library. To generate the library, we combine rajeclon orary

two trajectory optimization methods: a parametric trajectory

Optimal Trajectory Library
Offline

optimization method that finds coarse initial trajectories and a)] Online
Differential Dynamic Programming (DDP) that further refine s * Trajectory Selection

these trajectories and generates linear local models of thaptimal ~ |

we maintain the consistency of adjacent trajectories. To kep the I

resultant library a reasonable size and also satisfy perfanance
requirements, the library is generated based on the contréér's

State and Push
Estimation

u=1a-K(E-X)

—

predicted performance. It is applied to standing balance cotrol
of humanoid robots that explicitly handle pushes. Most preious ‘ Robot
work assumes that pushes are impulsive. The proposed contler
also handles continuous pushes that change with time. We
compared our approach with a Linear Quadratic Regulator
(LQR) gain scheduling controller using the same optimizain
criterion. The effectiveness of the proposed method is expled

control laws. To construct a controller from these local moels, X Local Model Selection u

Fig. 1. Architecture of standing balance control using gttary library.

with simulation and experiments. be used to compute an improved trajectory. After DDP’s
Index Terms—Humanoid robot, standing balance control, convergence to an optimal trajectory, linear local modéthe
trajectory library optimal control law and quadratic local models of the value

function are available.
For DDP’s convergence to an optimum, a good initial
Standing balance control keeps balance in the presence #igjectory is important especially when a dynamic system is
perturbations during upright stance, which is a fundanentahighly nonlinear and constrained. We combine a parametric
problem for humanoid robots. Due to small feet, the anklelrajectory optimization method [13] and DDP to generate a
torques are quite limited to prevent the feet from tiltingdan library of optimal trajectories and linear local models bét
the robot falling [1]. The large range of motion of the upperoptimal control laws for standing balance control offlines A
body makes the system dynamics nonlinear. Limits on joinshown in Fig. 1, we take the push size and the push location
angles and joint velocities also add to the control chakleng as trajectory selection parameters, At each time step,
Nonlinear feedback controllers [2], linear feedback coliers ~ appropriate trajectories are selected from the librarypating
[3], intuitive controller designs [4], [5], and controlkeusing to the estimate of the selection parametérs,The estimate
online optimization [6], [7] have been studied. of the current statex, which consists of the joint angles and

The standing balance control problem can be formulated a€ joint angular velocities, is used to select the neacesl|
an optimal control problem and it was shown that multiplemodel on the selected trajectories. The selected local hiwde

balance strategies can be generated from one optimizatigtsed to calculate the commands online= u — K(x — X).
criterion [8], [9]. Dynamic Programming (DP) provides a The result is a state feedback control law. The idea is partly
way to find an optimal feedback control law for a nonlinearintroduced in our previous work [14]. This paper is the lates
system [10]. But when the dimensionality of the state isdarg result of our continuing effort and its implementation orealr

the computation and even the storage of the optimal contrdlobot. Most previous work assumes that pushes are impulsive
law becomes difficult, due to the Curse of Dimensionalityand change joint velocities instantaneously [4]-[7], [e
[10] Differential Dynamic Programming is a local versioh o also consider pUSheS that last a while and Change with time.
dynamic programming [11], [12]. It applies the principle of A number of efforts have been made to use collections
optimality in the neighborhood of a trajectory. This allothe of trajectories and local models to represent feedback con-
coefficients of quadratic approximations of the value fiorct trol laws [15]-[18]. In [15], [16], linear local models algn
and linear approximations of the optimal control law to beoptimal trajectories were used to construct a represemtati
computed along the trajectory. These coefficients may theof the global control law. In [17], Receding Horizon DDP

I. INTRODUCTION

was proposed to generate time-invariant local controll&rs where

trajectory library was used to synthesize a global corgrddr x1 — F(x0, uo, @)
a simulated multi-link swimming robot. In [18], locally-id Xy — F(x1, w1,)
LQR controllers were used to construct a nonlinear feedback e
policy. To improve the stability that can be obtained from a cly) = xy — F(xy-1,un-1,0))
trajectory tracking control law, online adaptation of theice 9(x0, ug,)
of the reference trajectory was proposed for walking cdntro g(x1,u1, @)
[19].
This article is organized as following: In Section II, the | 9(xn-1,un—1, @)

trajectory library generation method and the controlldngs with

the optimal trajectory library are described. In Sectidnthe [T @)
: : : cr:=1[0,...,0,g1,...,

prop_osed con_troller_|s applied to s_tandmg balance contnol L gL gL

Section IV, simulation and experimental results are shown. N N

Conclusions and future work are discussed in Section V. gnd a corresponding definition ef;. The constraints on the
state variables (3) and on the control variables (4) arentalke
i the bounds on the NLP variables. We solve this NLP problem
A. Problem Formulation with SNOPT, which uses an SQP algorithm [20].

In the present paper we are concerned with dynamic] o]
systems determined by deterministic time-invariant dyicam C- Trajectory Optimization Using DDP
equations, Differential Dynamic Programming (DDP) is a second

Xpr1 = F(xg, ug, o), (1) order gradient-based trajectory optimization method [[I113].

o))) Given an initial trajectory’, DDP integrates the first and sec-
where subscripk is the time indexx;. are the state variables, ,y hartial derivatives of the value function backward inei

uy are the control variables, andare the control parameters, A new updated trajectory’*! is generated by integrating the

which are constant. An optimal control problem is to find aqynamics equations forward in time at each time step using
control sequencayy, y_1, that minimizes the cost function the linear feedback law:

II. CONTROL USING A TRAJECTORYLIBRARY

N—

—

J+L i _ G+ _ i
J = ¢(xn,a) + > L(xXk, uk,),) e e ©)
k=0 with initial statex, and control parameter specified, where

where L is the one step cost functiotN is a search horizon, ¢ is a scalar betwee(D, 1). The definitions ofK; and Auy
and¢ is the terminal cost function, which is chosen to approx-are given by a standard DDP algorithm [11]. These processes
imate the infinite time problem with the same optimizationare repeated until convergence to a local optimum is actieve
criterion. We chooséV so thatxy is near the goal state and For constraints on the state variables (3) and on the path (5)
use the quadratic value function of a linear quadratic r@igul We augment the one step cost function with quadratic pesalti
as ¢. on the constraint violations.

Constraints on the state variables of the form D. Nearest Neighbor Control

XL < Xp < Xy, 3) Our approach uses local models of the optimal control
policy to interpolate control actions. Byproducts of DDRe ar
linear local models of the optimal control law along the oyl

ur < ug < uy, (4) trajectory,

on the control variables

and on the path we = 1y, — K (3 — %), (10)

- - 5 where i, and %, are respectively the control variables and
8L < g(xk, wi, @) < gu,) the state variables on the optimal trajectory, dsg is the
where functiong may be scalar or vector-valued functions, corresponding gain matrix. We formulate the optimal cadntro

may be applied. problem so that the underlying nonlinear value functiond an
)) S control laws are time invariant and functions only of state.
B. Parametric Trajectory Optimization Because the local models (10) are local approximations to

In this section we describe a parametric trajectory opt@miz the optimal control law in the neighborhood of an optimal
tion method. Let us treat the state and the control variableBajectory, they are also time-invariant and functionsyoof
as a set of NLP (Nonlinear Programming) variablgs;= state. Thus, we can construct a controller from these djyatia
[X0,U0,X1,11,...,%xy]", and the dynamics equations (1) as localized local models. The simplest choice is to select the
constraints. As a result of the transcription, the optinuadtool nearest Euclidean neighbor. For different control parenset
constraints (1) and (5) are replaced by the NLP constraints: the nearest optimal trajectories are selected according to

cr <c(y)<cy (6) Aa"D,Aa, (11)

where Aq« is the deviation of the current control parameters Both the parametric trajectory optimization method and
from those of an optimal trajectory arfdl,, is a distance met- DDP are local trajectory optimization methods and there is
ric. Then, the nearest local model on the selected trajestor no guarantee of a global optimum. Therefore, local models of
is selected according to the control laws from different trajectories may be incetet
T with each other and they may be generated from different
Ax' D, Ax, (12) :
underlying control laws. To construct a controller from mpan

where Ax is the deviation of the current statefrom a local local models, we try to force all these local models to be

model andD,, is a distance metric. Nearest neighbor controlconsistent with each other by 1) starting the optimization
is given by process from a goal state and then consider a growing volume

u=1-K(x-x) (13) of the state space, 2) using the policy of one state of a
B pair to reoptimize the trajectory of the other state of the
whereu, x, andK are respectively the control variables, the pair and vice versa, and 3) adding more local models in
state variables, and the gain matrix of the nearest localeinod petween nearest neighbors that continue to fail to predich e
other’s value until the policy or value function discontityuis
confirmed or eliminated [15]. We also periodically reoptmi
The local controllers from a single trajectory may performeach local model using the policies of other local modelthéf
poorly far from the trajectory. To synthesize a controlleeo combination of local value function models generates aajlob
a larger portion of state space, a library of optimal trajeies yalue function that satisfies the Bellman equation everyehe

is used. the resulting policy and value function are globally optima
To limit the size of the resultant library, the optimal tra- [10], [21].

jectories and local models are stored on an adaptive grid of
initial states and control parameters according to the lsited I1l. STANDING BALANCE CONTROL

perll;]oronl]fllir:;e.- A. Robot Models

Step 1 Use DDP to generate an optimal trajectory with the ini-
tial state and control parameters that is easy to optimize.
Store the optimal trajectory and local models as an initial
library.

Step 2 Initialize the system at nearby initial conditions «)
and let it follow the nearest neighbor control and the
current library, which generates a trajectory of total cost
J1.

Step 3 Use DDP or SNOPT+DDP to generate an optimal tra-
jectory with the same initial condition, o) and total
cost.Js.

Step 4 Compard; andJs. If J; —.Js is less than a performance
bound, return to Step 2 and continue.

Step 5 Otherwise, store the optimal trajectory and local eteod
generated in Step 3. Return to Step 2 and continue untHig. 2. a) Sarcos Primus System hydraulic humanoid robotvi)-fink
the portion of state space of interest and all possiblenverted pendulum model.
control parameters are all considered.

In Step 3, the trajectory generated in Step 2 is used as the The robot is assumed to be a rigid-body system and planar
initial trajectory for DDP to further refine. If DDP fails tao- in the sagittal plane. A torso push is modeled as a horizontal
verge to a better trajectory, parametric trajectory optation force of sizep, applied on the torso at a location, which
with SNOPT is used, whose result or its interpolation is useds the distance from the point of action to the hip joint
as the initial trajectory for DDP to further refine. To avoltet below. The feet are not fixed on the ground, but the robot
same local optimum as DDP, SNOPT can use a different initiatan be modeled with a two-link inverted pendulum if the
trajectory, such as a straight line connecting the initialesto ground reaction forces are limited to keep the feet fromrsijd
the goal state in the state space. and flat on the ground. In the two-link inverted pendulum

To choose new initial condition%, «) in Step 2, candidate model, the legs are the first link and the upper body is the
initial conditions at the beginning of a waiting list are sea second link, as shown in Fig. 2(b). The model parameters
while unsolved neighbors at a grid of initial conditions areare based on our Sarcos Primus System hydraulic humanoid
appended to the end of the waiting list. This process is tepea robot (shown in Fig. 2(a)). The mass, the length, the moment
until all initial conditions of interest at the grid pointgea of inertia of the first link are respectively 56 kg, 0.8 m, and
considered. The spacing of the grid has to be chosen ifh.24 kgm?. Those of the second link are respectively 37 kg,
advance. 0.8 m, and 1.73 kgn®. Defining x := (0,,05,0.,0,)" and

E. Trajectory Library Generation

(b)

u := (1,,7,)7, the discrete-time dynamics (1) can be derived, TABLE |
. . PARAMETERS USED BY TRAJECTORY OPTIMIZATION
where push size and push location- are taken as control

parametersq := (p,7)". parameter value parameter value
o uy, —(150.0,150.0)T X7, —(0.4,0.2,6.0,6.0)T
B. State and Push Estimation uy (40.0,150.0)7 X (0.4,0.8,6.0,6.0)T
‘s o : diag(1.2,0.1,0.9,0.1) R diag(0.06, 1.59)
We have no sensors for joint velocities, push sizeand Q ARt d
! P 7 gu (2.0,0.16)T g, —(2.0,0.04)T

push location, which have to be estimated based on the mea-
surements of the joint angles and the ground reaction forces

Let us define the state to be estimatedxds:= (x",a™)", whereu,,;; are the joint torques of the robot during static
and the observation as := (0,,05, f», f-)" (see Fig. 2 for upright stance without pushes. Constraints (3) and (4) lse a
the definitions off, and f.). The state transition model and applied. We use SNOPT to solve this quadratic programming

the observation model are given by: problem [20].
F
Xjy1 = (X’“’auk’a) +w (14 IV. RESULTS
=G(x¢,up) +w, w~ N(0,S) A. Smulation
[0, To generate optimal trajectories for standing balance con-
S On 4y trol, we take upright with zero velocity as the initial state
k= fo(Xg, ug, @) (15) and generate optimal trajectories on a uniform grid of cantr
| f=(Xk, ug,) parameters (push sizeand push location). The step sizes are
= H(x{,up) +v, v~N(0,T), 5 Newtons forp and0.1 meter forr, respectively. The param-

] . _ eters used by trajectory optimization are listed in Tabl&dl.
wheref, and f. are calculated by inverse dynamics, the noisemake the proposed controller more applicable to a real fobot
termsw andv are uncorrelated, anfl and T are covariance |y optimizeQ and R such that the gain matrices generated

matrices. The state transition model and the observatiateino by DDP are small. Since we use SNOPT to generate coarse
are both nonlinear, so the Extended Kalman Filter is emgloye jnitial trajectories for DDP, we us&/ = 100 and 7' = 0.05

During standing balance control, the statethe push size&, {5y SNOPT andNV = 500 and T = 0.01 for DDP. Because
and the push location are estimated at each time step. of the resolution difference, trajectories generated byDSN
C. Constraints and Optimization Criteria are interpolated_ before they are used as initigl trajeg:tori
o . . . for DDP. According to the ranges of corresponding variables
Any limitations on the joint angles and the joint velocities r; ~ _ diag(1,1,0.01,0.01) and D, = diag(102,10°) are
are taken as constraints on the state variables (3). Liow&t ,soq The trajectory library is generated on a workstatidh w
on the joint torques are taken as constraints on the contrg tel(R) Xeon(TM) 3.20GHz dual-core CPU and 2G memory.
variables (4). To keep the foot from sliding and flat on the; 15105 anous seconds for SNOPT to optimize one trajectory
groundj the ground reaction forces are limited by the Bitti ;41 second for DDP to re-optimize it and generate local
cone, |=| < p, wherey is the coefficient of static friction; 1,415 |t takes about an hour to generate the trajectarriib
The CoP (the center of pressure) is limited by the foot suppor-g . a given performance bound (for example 1000), the

reg?on,—T—j € Q, wherer, is the_ankle torque a_n@_ is the resultant library has2 trajectories andl1000 local models.
region of the foot support (see Fig. 2 for the definitionsfof

f=, andt,) [1]. These constraints are taken as constraints on

4000
the path:
o fm/fz 3500
g(x,u,p, T) = |:_Ta/,fz : (16) 3000
The one step cost function we use is in a quadratic form, 2500
& 2000
L(x,u,a) = %' QxXT + a'RaT, (17) © . °
1500
wherex := x — x4(a), 1 := u — uy(«a), T is the time step, woob & ?:, W°
Q andR are diagonal matrices with appropriate dimensions, v, o
x4(a) and ug() are respectively the desired state and the 500
desired control for a specified control parameter veetokVe e e o o o
use quadratic programming to find the desired statand the Push size (N)

desired controiy. For SpeCIerd pUSh Slmand DUSh Ioc_a'uon . Fig. 3. Total cost comparison given the robot followed thepmsed controller

T Xfl_andud are th_e _St"_ﬂe and the control of the robot in Statlc(red open circles) and given the robot followed an optimajettory (blue

equilibrium that minimize dots). Pushes are applied at the middle of the torso (0.4rsab®ve the hip)
and the robot is initialized upright with zero velocity.

min (ug — Winit) " (Ug — Winit), (18)
Xd,Uq

With the robot started standing upright with zero velocity, 01
we compare the total costs given the robot followed the
proposed controller and followed an optimal trajectory emd
different pushes. As shown in Fig. 3, they are close to each
other if there are optimal trajectories stored in the lippreor
similar pushes. Otherwise, the performance of the proposed
controller is sub-optimal. However, the performance degra
tion is bounded because trajectories are stored in theryibra
according to the performance.

In the following simulations§,, 6}, 6., andé;, denote the
true values of ankle angle, hip angle, ankle angular velocit
and hip angular velocity. Their estimates are denoted by

0,, 0, 0,, and 6),. 7, and 7, are applied torques at the
ankle joint and the hip joint. The elements of the closest
state and its corresponding controls found in the trajgctor os
library are denoted a8,, 65, 6., 65, 7., and 7,,. For push
and state estimation, digg012,0.012,0.012,0.012,1,0.01?)
and diag0.012,0.012,0.012,0.012) are used forS and T,
respectively.

A simulation result is shown in Fig. 4. In this simulation, a
short push ofil00 Newtons lasted fo8.5 seconds is applied at
the middle of the torso, which is about2 meters above the 01
ground. The robot leans forward and returns to upright &fier
push, similar to the ’hip’ strategy used by humans [8]. Aroth
simulation result is shown in Fig. 5. In this simulation, a

Joint angle (1)

0 05 1 15 2 25 3 35 4 4.5 5
Time (s)

Fig. 6. Joint angles for a random push sequence.

0.4

0.3

Joint velocity (r/s)

constant push of0 Newtons is applied at the same place. The Phes 1 as 2 o5 TS ss 4 4w s
robot leans against the push to use the gravity to compensate
for the push. Fig. 7. Joint velocities for a random push sequence.

The robustness of the proposed controller is tested with a

sequence of random pushes. The test push size sequenceylgj inear quadratic regulators are designed using the same

30, 70, 90, and 10 Newtons. Trajectories for constant pushesytimization criterion (17). According to the estimatestioé

of 35, 70, 85, and 10 Newtons at corresponding locations argysh size and the push location, an appropriate linear gtiadr

used. As shown in Figs. 6, 7, 8, and 9, for pushes of sizegqylator is used. This gain scheduling controller fallwddor

and locations not in the library and changing with time, theconstant forward pushes at the middle of the torso of thetrobo

simulated robot can still keep balance. of larger than 64 Newtons. In contrast, the proposed cdatrol

We compared the proposed controller with a gain schedulis aple to handle up to 74 Newtons. The total costs for the

ing controller, in which the system is modeled as a two-gain scheduling controller are 2350, 1428, and 324 for @mst

link inverted pendulum, linearized about the desired State pushes of 60, 55, and 50 Newtons. The Corresponding costs for
the proposed controller are 779, 369, and 247. The proposed
controller performs better than the gain scheduling cdietro

1 (| | ;

Fig. 4. Our simulated robot responding to a short push at tiaellm of the
torso of 100 Newtons lasting for 0.5 seconds (the configumatif the robot
is drawn every0.5 seconds).

=) -80
-100
-120

0 0.5 1 15 2 25 3 35 4 4.5 5

Fig. 5. Our simulated robot responding to a constant pusheattiddle of Time (s)
the torso of 70 Newtons (the configuration of the robot is dravery 0.5
seconds). Fig. 8. Joint torques for a random push sequence.

N
S

o

!
)
S

Joint torque (N-m)
s
3

|
@
3

=
o
S

@
S

|

Push size (N)

=)

True value]
= = = Estimate

05 1 15 2 25 3 35 4 45 5
Time (s)

!
@
S

o
o

True value]
= = = Estimate

o
o

Push location
on the torso (m)
o o
RS

)

2 25 3 35 4 45 5
Time (s)

S
o
@
-
-
2

Fig. 9. Push size and location estimates for a random pusleses.

on the nonlinear robot simulation in terms of handing larger”'9: 10
pushes and lower cost.

Our robot responding to a continuous push whiledsten (video
frames are shown every half second).

100f

The proposed standing balance controller was also tested &_100

-=
-
-~ -~

on the Sarcos humanoid robot. Hydraulic actuators and load 0

sensors are used to control the torque of each joint [22]. The -

0.2

.............

following measurements are used during experiments: joint < O'_N /

angles measured by potentiometers; the ground reactioagor -02;
measured by a force platform on which it stands; the push size

measured by the force sensor at the end of the pushing device; £ o

and the push location measured by hand. All joints have stiff ~ >

PD controllers except the two ankle roll joints, the two ankl o
pitch joints, and the two hip pitch joints. The two ankle roll = |

1 2 3 4 5 6 7 8 9
~= --.-.-__:::=-= ----------

)
1 2 3 4 5 6 7 8 9

L. . ; AL A pmed .%‘_—‘ S
joints have PD controllers of low gains to keep the feet from 2 —SOW et =

~ -100f

rolling and flat on the ground. The legs are coordinated to

make the robot a planar two-link inverted pendulum: oo el
) 2o 5.7-—-%;;__.—:;} —
Tal = Ta/2+ KZ(9a = 0a,1) (19) &
R 100 A
Thi = Th/2 + K[}(t?h _ eh,l) (20) 0 1 2 3 4Time (3)5 6 7 8 9
Tawr =Ta)2+ K40, — 0 21
ar a/ p(Aa o’ () Fig. 11. Our robot responding to pushes while standing. glmeshes are
Thy = Th/2 + K;f (On — Onr) (22) in the forward direction (positive forces) and a similargarof pushes are in

the backward direction.

where 741, Thi, Ta,r, @and T, are the actuation torques of

the ankle pitch joint and the hip pitch joint of the left leg 1o check our implementation, the measured pushes are
and the right leg, respectivelfl. ;, 051, 0., andf, . are the given to a simulation, which is compared with the experiraent
angle measurements of these jointsandr, are the command The corresponding joint angles, joint velocities, and foin
torques of the ankle joint and the hip joint given by (1&). torques are shown in Fig. 13. The normalized ground reaction
and 6, are its angle estimated(;’ and K, are the position forces are shown in Fig. 14. It is shown that the experimental
gains for leg coordination. results match those of our simulation. The constraints en th
In the following experiments, we apply quickly changing ground reaction forces are satisfied (as shown in Fig. 14) and

and slowly changing pushes at the middle of the torso, whiclihe feet remain flat on the ground during the experiment (as
is 1.2 meters above the ground and 0.4 meters above the highown in Fig. 10).

in both the forward and the backward directions. Example
experiment video frames are shown in Fig. 10. The push sizes

V. CONCLUSION AND FUTURE WORK

and the responding joint angles and joint torques are shown In this paper, we use a trajectory library to synthesize a
in Fig. 11. The measured and estimated push size and pusask-level controller for constrained nonlinear systewis.use
location are shown in Fig. 12. For both quickly changing anda parametric trajectory optimization method to generaiteain
slowly changing pushes, the robot can keep balance using theajectories for Differential Dynamic Programming, whitthr-
proposed controller. ther refines these trajectories and generates local ctamgol

Measurement;
= = = Estimate

Push size (N)
o
(=]

4
©

Measurement
'|| = = = Estimate
h

| N N O
L RO DAt ekl T
1
1

1
v 1
n N N N

3 34 36 38 40 22 2
(b)

a) Push size estimation b) Push location estimation

o
)

o
~

Push locatin
on the torso (m)

o
[N}

o

Fig. 12.

Joint velocity (r/s)

50

=)

Joint torque (N-m)
I
&
3

Expry = = =Sim7, = = =S,
! 1 L)

|
N
15}
)

34 35 36 37 38 39 40 41 42 43 44 45
Time (s)

Fig. 13.
of the ankle pitch joint and the red lines are of the hip piteimg The solid

lines are the measurements of the real robot and the dastesddie those of

the simulated robot.

Joint angles, joint velocities, and joint torqu&be blue lines are

Fig. 14. The normalized ground reaction forces. The sofiddiare those of
the real robot, while the dashed lines are those of the stedileobot. The
foot support region i§—0.04,0.16) meters.

(2]

(3]

(4]
(5]
(6]

(7]
(8]
El
[10]
[11]
[12]

[13]

We force the adjacent trajectories to be consistent, which
enables us to synthesize a more global controller from thes%4]
local models. The optimal trajectories and local models are
stored based on the simulated performance of the controllelt5]
which keeps the resultant library a reasonable size and also

satisfies the performance requirements.

In our future work, we will extend our model to include a [16]
full 3D robot and use arms and knees. We will also extend the
proposed method to periodic tasks like biped walking cdntro [17]

in which there are cyclic trajectories instead of desiredest

ACKNOWLEDGMENT

(18]

This material is based upon work supported by National;g)
Natural Science Foundation of China Key Project (Grant No.

60935001).

REFERENCES
[1] A. Goswami, “Postural stability of biped robots and theot-rotation

indicator (FRI) point,”Int. J. Rob. Res., vol. 18, no. 6, pp. 523-533,

1999.

[20]

[21]

[22]

H. Hemami and P. Camana, “Nonlinear feedback in simpt®iootion
systems,”|EEE Trans. Autom. Contr., vol. 21, no. 6, pp. 855 — 860,
1976.

J. Golliday, C. and H. Hemami, “Postural stability of ttveo-degree-of-
freedom biped by general linear feedbaclEEE Trans. Autom. Contr.,
vol. 21, no. 1, pp. 74 — 79, 1976.

B. Stephens, “Humanoid push recovery,” Rnoc. |EEE-RAS Int. Conf.
Humanoid Robots, Pittsburgh, PA, US, 2007.

——, “Integral control of humanoid balance,” iRroc. IEEE/RS] Int.
Conf. Intell. Robots Syst., 2007, pp. 4020-4027.

Y. Abe, M. da Silva, and J. Popovi¢, “Multiobjective coal with fric-
tion contacts,” inProc. ACM S GGRAPH/Eurographics Symposium on
Computer Animation. San Diego, California: Eurographics Association,
2007, pp. 249 — 258.

A. Macchietto, V. Zordan, and C. R. Shelton, “Momenturmtrol for
balance,”ACM Trans. Graph., vol. 28, no. 3, pp. 1-8, 2009.

A. Kuo, “An optimal control model for analyzing human pogal
balance,”|EEE Trans. Biomed. Eng., vol. 42, no. 1, pp. 87-101, 1995.
C. G. Atkeson and B. Stephens, “Multiple balance stiaedrom one
optimization criterion,” inProc. IEEE-RAS Int. Conf. Humanoid Robots,
Pittsburgh, PA, US, 2007.

R. Bellman,Dynamic Programming. Dover Publications, 2003.

P. Dyer and S. R. McReynold$he Computation and Theory of Optimal
Control. Academic Press, 1970.

D. Jacobson and D. Mayn®ifferential Dynamic Programming. New
York, NY, US: Elsevier, 1970.

J. T. Betts,Practical Methods for Optimal Control Using Nonlinear
Programming. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2001.

C. Liu and C. G. Atkeson, “Standing balance control gsintrajectory
library,” in Proc. Int. Conf. Intell. Robots Syst., St. Louis, 2009, pp.
3031-3036.

C. G. Atkeson, “Using local trajectory optimizers toesgl up global
optimization in dynamic programming,” ildvances in Neural Infor-
mation Processing Systems, J. D. Cowan, G. Tesauro, and J. Alspector,
Eds., vol. 6. Morgan Kaufmann Publishers, Inc., 1994, p3-660.
C. G. Atkeson and J. Morimoto, “Nonparametric repreéagon of
policies and value functions: a trajectory-based apprdachAdvances
in Neural Information Processing Systems, pp. 1643-1650, 2003.

Y. Tassa, T. Erez, and W. Smart, “Receding horizon cffiéial dynamic
programming,” inAdvances in Neural Information Processing Systems,
vol. 20, pp. 1465-1472, 2008.

R. Tedrake, “LQR-Trees: Feedback motion planning oarsp random-
ized trees,” inProc. the Robotics: Science and Systems, 2009, p. 8.

P. B. Wieber and C. Chevallereau, “Online adaptatiomedérence tra-
jectories for the control of walking systemdRbbotics and Autonomous
Systems, vol. 54, no. 7, pp. 559-566, 2006.

P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQBaaithm
for large-scale constrained optimizatio®’AM Journal on Optimization,
vol. 12, pp. 979-1006, 1997.

D. P. BertsekasDynamic Programming and Optimal Control.
Scientific, 1995.

D. C. Bentivegna, C. G. Atkeson, and J. Y. Kim, “Comptiaontrol of

Athena

a hydraulic humanoid joint,” irProc. IEEE-RAS Int. Conf. Humanoid
Robots, 2007.

