
Implementation of a Trajectory Library Approach to
Controlling Humanoid Standing Balance

Chenggang Liu and Jianbo Su
Department of Automation

Shanghai Jiaotong University
Shanghai, China

{frankliu, jbsu}@sjtu.edu.cn

Abstract—This paper presents a nonlinear controller based
on a trajectory library. To generate the library, we combine
two trajectory optimization methods: a parametric traject ory
optimization method that finds coarse initial trajectories and
Differential Dynamic Programming (DDP) that further refine s
these trajectories and generates linear local models of theoptimal
control laws. To construct a controller from these local models,
we maintain the consistency of adjacent trajectories. To keep the
resultant library a reasonable size and also satisfy performance
requirements, the library is generated based on the controller’s
predicted performance. It is applied to standing balance control
of humanoid robots that explicitly handle pushes. Most previous
work assumes that pushes are impulsive. The proposed controller
also handles continuous pushes that change with time. We
compared our approach with a Linear Quadratic Regulator
(LQR) gain scheduling controller using the same optimization
criterion. The effectiveness of the proposed method is explored
with simulation and experiments.

Index Terms—Humanoid robot, standing balance control,
trajectory library

I. I NTRODUCTION

Standing balance control keeps balance in the presence of
perturbations during upright stance, which is a fundamental
problem for humanoid robots. Due to small feet, the ankle
torques are quite limited to prevent the feet from tilting and
the robot falling [1]. The large range of motion of the upper
body makes the system dynamics nonlinear. Limits on joint
angles and joint velocities also add to the control challenge.
Nonlinear feedback controllers [2], linear feedback controllers
[3], intuitive controller designs [4], [5], and controllers using
online optimization [6], [7] have been studied.

The standing balance control problem can be formulated as
an optimal control problem and it was shown that multiple
balance strategies can be generated from one optimization
criterion [8], [9]. Dynamic Programming (DP) provides a
way to find an optimal feedback control law for a nonlinear
system [10]. But when the dimensionality of the state is large,
the computation and even the storage of the optimal control
law becomes difficult, due to the Curse of Dimensionality
[10]. Differential Dynamic Programming is a local version of
dynamic programming [11], [12]. It applies the principle of
optimality in the neighborhood of a trajectory. This allowsthe
coefficients of quadratic approximations of the value function
and linear approximations of the optimal control law to be
computed along the trajectory. These coefficients may then

Optimal Trajectory Library

Robot

State and Push
Estimation

Local Model Selection

Trajectory Selection

Trajectory Library
Generation

Offline

Online

Optimal Trajectory Library

Robot

State and Push
Estimation

Local Model Selection

Trajectory Selection

Trajectory Library
Generation

Offline

Online

Fig. 1. Architecture of standing balance control using a trajectory library.

be used to compute an improved trajectory. After DDP’s
convergence to an optimal trajectory, linear local models of the
optimal control law and quadratic local models of the value
function are available.

For DDP’s convergence to an optimum, a good initial
trajectory is important especially when a dynamic system is
highly nonlinear and constrained. We combine a parametric
trajectory optimization method [13] and DDP to generate a
library of optimal trajectories and linear local models of the
optimal control laws for standing balance control offline. As
shown in Fig. 1, we take the push size and the push location
as trajectory selection parameters,α. At each time step,
appropriate trajectories are selected from the library according
to the estimate of the selection parameters,α̂. The estimate
of the current state,̂x, which consists of the joint angles and
the joint angular velocities, is used to select the nearest local
model on the selected trajectories. The selected local model is
used to calculate the commands online,u = ū − K̄(x̂ − x̄).
The result is a state feedback control law. The idea is partly
introduced in our previous work [14]. This paper is the latest
result of our continuing effort and its implementation on a real
robot. Most previous work assumes that pushes are impulsive
and change joint velocities instantaneously [4]–[7], [9].We
also consider pushes that last a while and change with time.

A number of efforts have been made to use collections
of trajectories and local models to represent feedback con-
trol laws [15]–[18]. In [15], [16], linear local models along
optimal trajectories were used to construct a representation
of the global control law. In [17], Receding Horizon DDP



was proposed to generate time-invariant local controllers. A
trajectory library was used to synthesize a global controller for
a simulated multi-link swimming robot. In [18], locally-valid
LQR controllers were used to construct a nonlinear feedback
policy. To improve the stability that can be obtained from a
trajectory tracking control law, online adaptation of the choice
of the reference trajectory was proposed for walking control
[19].

This article is organized as following: In Section II, the
trajectory library generation method and the controller using
the optimal trajectory library are described. In Section III, the
proposed controller is applied to standing balance control. In
Section IV, simulation and experimental results are shown.
Conclusions and future work are discussed in Section V.

II. CONTROL USING A TRAJECTORYL IBRARY

A. Problem Formulation

In the present paper we are concerned with dynamic
systems determined by deterministic time-invariant dynamics
equations,

xk+1 = F (xk,uk, α), (1)

where subscriptk is the time index,xk are the state variables,
uk are the control variables, andα are the control parameters,
which are constant. An optimal control problem is to find a
control sequence,u0,N−1, that minimizes the cost function

J := φ(xN , α) +

N−1∑

k=0

L(xk,uk, α), (2)

whereL is the one step cost function,N is a search horizon,
andφ is the terminal cost function, which is chosen to approx-
imate the infinite time problem with the same optimization
criterion. We chooseN so thatxN is near the goal state and
use the quadratic value function of a linear quadratic regulator
asφ.

Constraints on the state variables of the form

xL ≤ xk ≤ xU , (3)

on the control variables

uL ≤ uk ≤ uU , (4)

and on the path

gL ≤ g(xk,uk, α) ≤ gU , (5)

where functiong may be scalar or vector-valued functions,
may be applied.

B. Parametric Trajectory Optimization

In this section we describe a parametric trajectory optimiza-
tion method. Let us treat the state and the control variables
as a set of NLP (Nonlinear Programming) variables,y :=
[x0,u0,x1,u1, . . . ,xN ]T, and the dynamics equations (1) as
constraints. As a result of the transcription, the optimal control
constraints (1) and (5) are replaced by the NLP constraints:

cL ≤ c(y) ≤ cU (6)

where

c(y) :=















x1 − F (x0,u0, α)
x2 − F (x1,u1, α)

. . .
xN − F (xN−1,uN−1, α)

g(x0,u0, α)
g(x1,u1, α)

. . .
g(xN−1,uN−1, α)















(7)

with

cL := [0, . . . ,0
︸ ︷︷ ︸

N

,gL, . . . ,gL
︸ ︷︷ ︸

N

]T (8)

and a corresponding definition ofcU . The constraints on the
state variables (3) and on the control variables (4) are taken as
the bounds on the NLP variables. We solve this NLP problem
with SNOPT, which uses an SQP algorithm [20].

C. Trajectory Optimization Using DDP

Differential Dynamic Programming (DDP) is a second
order gradient-based trajectory optimization method [11], [12].
Given an initial trajectoryxj , DDP integrates the first and sec-
ond partial derivatives of the value function backward in time.
A new updated trajectoryxj+1 is generated by integrating the
dynamics equations forward in time at each time step using
the linear feedback law:

u
j+1

k = u
j
k − ǫ∆uk − Kk(xj+1

k − x
j
k) (9)

with initial statex0 and control parameterα specified, where
ǫ is a scalar between(0, 1). The definitions ofKk and ∆uk

are given by a standard DDP algorithm [11]. These processes
are repeated until convergence to a local optimum is achieved.
For constraints on the state variables (3) and on the path (5),
we augment the one step cost function with quadratic penalties
on the constraint violations.

D. Nearest Neighbor Control

Our approach uses local models of the optimal control
policy to interpolate control actions. Byproducts of DDP are
linear local models of the optimal control law along the optimal
trajectory,

uk = ūk − K̄k(xk − x̄k), (10)

where ūk and x̄k are respectively the control variables and
the state variables on the optimal trajectory, andK̄k is the
corresponding gain matrix. We formulate the optimal control
problem so that the underlying nonlinear value functions and
control laws are time invariant and functions only of state.
Because the local models (10) are local approximations to
the optimal control law in the neighborhood of an optimal
trajectory, they are also time-invariant and functions only of
state. Thus, we can construct a controller from these spatially
localized local models. The simplest choice is to select the
nearest Euclidean neighbor. For different control parameters,
the nearest optimal trajectories are selected according to

∆αTDα∆α, (11)



where∆α is the deviation of the current control parameters
from those of an optimal trajectory andDα is a distance met-
ric. Then, the nearest local model on the selected trajectories
is selected according to

∆xTDx∆x, (12)

where∆x is the deviation of the current statex from a local
model andDx is a distance metric. Nearest neighbor control
is given by

u = ū− K̄(x − x̄) (13)

whereū, x̄, andK̄ are respectively the control variables, the
state variables, and the gain matrix of the nearest local model.

E. Trajectory Library Generation

The local controllers from a single trajectory may perform
poorly far from the trajectory. To synthesize a controller over
a larger portion of state space, a library of optimal trajectories
is used.

To limit the size of the resultant library, the optimal tra-
jectories and local models are stored on an adaptive grid of
initial states and control parameters according to the simulated
performance.

In outline:

Step 1 Use DDP to generate an optimal trajectory with the ini-
tial state and control parameters that is easy to optimize.
Store the optimal trajectory and local models as an initial
library.

Step 2 Initialize the system at nearby initial conditions(x, α)
and let it follow the nearest neighbor control and the
current library, which generates a trajectory of total cost
J1.

Step 3 Use DDP or SNOPT+DDP to generate an optimal tra-
jectory with the same initial conditions(x, α) and total
costJ2.

Step 4 CompareJ1 andJ2. If J1−J2 is less than a performance
bound, return to Step 2 and continue.

Step 5 Otherwise, store the optimal trajectory and local models
generated in Step 3. Return to Step 2 and continue until
the portion of state space of interest and all possible
control parameters are all considered.

In Step 3, the trajectory generated in Step 2 is used as the
initial trajectory for DDP to further refine. If DDP fails to con-
verge to a better trajectory, parametric trajectory optimization
with SNOPT is used, whose result or its interpolation is used
as the initial trajectory for DDP to further refine. To avoid the
same local optimum as DDP, SNOPT can use a different initial
trajectory, such as a straight line connecting the initial state to
the goal state in the state space.

To choose new initial conditions(x, α) in Step 2, candidate
initial conditions at the beginning of a waiting list are chosen
while unsolved neighbors at a grid of initial conditions are
appended to the end of the waiting list. This process is repeated
until all initial conditions of interest at the grid points are
considered. The spacing of the grid has to be chosen in
advance.

Both the parametric trajectory optimization method and
DDP are local trajectory optimization methods and there is
no guarantee of a global optimum. Therefore, local models of
the control laws from different trajectories may be inconsistent
with each other and they may be generated from different
underlying control laws. To construct a controller from many
local models, we try to force all these local models to be
consistent with each other by 1) starting the optimization
process from a goal state and then consider a growing volume
of the state space, 2) using the policy of one state of a
pair to reoptimize the trajectory of the other state of the
pair and vice versa, and 3) adding more local models in
between nearest neighbors that continue to fail to predict each
other’s value until the policy or value function discontinuity is
confirmed or eliminated [15]. We also periodically reoptimize
each local model using the policies of other local models. Ifthe
combination of local value function models generates a global
value function that satisfies the Bellman equation everywhere,
the resulting policy and value function are globally optimal
[10], [21].

III. STANDING BALANCE CONTROL

A. Robot Models

(a)

p

r

xf
zf

(b)

Fig. 2. a) Sarcos Primus System hydraulic humanoid robot b) Two-link
inverted pendulum model.

The robot is assumed to be a rigid-body system and planar
in the sagittal plane. A torso push is modeled as a horizontal
force of sizep, applied on the torso at a location,r, which
is the distance from the point of action to the hip joint
below. The feet are not fixed on the ground, but the robot
can be modeled with a two-link inverted pendulum if the
ground reaction forces are limited to keep the feet from sliding
and flat on the ground. In the two-link inverted pendulum
model, the legs are the first link and the upper body is the
second link, as shown in Fig. 2(b). The model parameters
are based on our Sarcos Primus System hydraulic humanoid
robot (shown in Fig. 2(a)). The mass, the length, the moment
of inertia of the first link are respectively 56 kg, 0.8 m, and
1.24 kg·m2. Those of the second link are respectively 37 kg,
0.8 m, and 1.73 kg·m2. Defining x := (θa, θh, θ̇a, θ̇h)T and



u := (τa, τh)T, the discrete-time dynamics (1) can be derived,
where push sizep and push locationr are taken as control
parameters,α := (p, r)T.

B. State and Push Estimation

We have no sensors for joint velocities, push sizep, and
push locationr, which have to be estimated based on the mea-
surements of the joint angles and the ground reaction forces.
Let us define the state to be estimated asxe := (xT, αT)T,
and the observation asz := (θa, θh, fx, fz)

T (see Fig. 2 for
the definitions offx and fz). The state transition model and
the observation model are given by:

xe
k+1 =

[
F (xk,uk, α)

α

]

+ w

= G(xe
k,uk) + w, w ∼ N(0,S)

(14)

zk =







θa

θh

fx(xk,uk, α)
fz(xk,uk, α)







+ v

= H(xe
k,uk) + v, v ∼ N(0,T),

(15)

wherefx andfz are calculated by inverse dynamics, the noise
termsw andv are uncorrelated, andS andT are covariance
matrices. The state transition model and the observation model
are both nonlinear, so the Extended Kalman Filter is employed.
During standing balance control, the statex, the push sizep,
and the push locationr are estimated at each time step.

C. Constraints and Optimization Criteria

Any limitations on the joint angles and the joint velocities
are taken as constraints on the state variables (3). Limitations
on the joint torques are taken as constraints on the control
variables (4). To keep the foot from sliding and flat on the
ground, the ground reaction forces are limited by the friction
cone, | fx

fz

| ≤ µ, whereµ is the coefficient of static friction;
The CoP (the center of pressure) is limited by the foot support
region,− τa

fz
∈ Ω, whereτa is the ankle torque andΩ is the

region of the foot support (see Fig. 2 for the definitions offx,
fz, andτa) [1]. These constraints are taken as constraints on
the path:

g(x,u, p, r) :=

[
fx/fz

−τa/fz

]

. (16)

The one step cost function we use is in a quadratic form,

L(x,u, α) := x̃TQx̃T + ũTRũT, (17)

wherex̃ := x − xd(α), ũ := u − ud(α), T is the time step,
Q andR are diagonal matrices with appropriate dimensions,
xd(α) and ud(α) are respectively the desired state and the
desired control for a specified control parameter vector,α. We
use quadratic programming to find the desired statexd and the
desired controlud. For specified push sizep and push location
r, xd andud are the state and the control of the robot in static
equilibrium that minimize

min
xd,ud

(ud − uinit)
T(ud − uinit), (18)

TABLE I
PARAMETERS USED BY TRAJECTORY OPTIMIZATION

parameter value parameter value
uL −(150.0, 150.0)T xL −(0.4, 0.2, 6.0, 6.0)T

uU (40.0, 150.0)T xU (0.4, 0.8, 6.0, 6.0)T

Q diag(1.2, 0.1, 0.9, 0.1) R diag(0.06, 1.59)

gU (2.0, 0.16)T gL −(2.0, 0.04)T

where uinit are the joint torques of the robot during static
upright stance without pushes. Constraints (3) and (4) are also
applied. We use SNOPT to solve this quadratic programming
problem [20].

IV. RESULTS

A. Simulation

To generate optimal trajectories for standing balance con-
trol, we take upright with zero velocity as the initial state
and generate optimal trajectories on a uniform grid of control
parameters (push sizep and push locationr). The step sizes are
5 Newtons forp and0.1 meter forr, respectively. The param-
eters used by trajectory optimization are listed in Table I.To
make the proposed controller more applicable to a real robot,
we optimizeQ and R such that the gain matrices generated
by DDP are small. Since we use SNOPT to generate coarse
initial trajectories for DDP, we useN = 100 and T = 0.05
for SNOPT andN = 500 and T = 0.01 for DDP. Because
of the resolution difference, trajectories generated by SNOPT
are interpolated before they are used as initial trajectories
for DDP. According to the ranges of corresponding variables,
Dx = diag(1, 1, 0.01, 0.01) and Dα = diag(102, 106) are
used. The trajectory library is generated on a workstation with
Intel(R) Xeon(TM) 3.20GHz dual-core CPU and 2G memory.
It takes about6 seconds for SNOPT to optimize one trajectory
and 1 second for DDP to re-optimize it and generate local
models. It takes about an hour to generate the trajectory library.
For the given performance bound (for example 1000), the
resultant library has82 trajectories and41000 local models.

−80 −60 −40 −20 0 20 40 60 80
0

500

1000

1500

2000

2500

3000

3500

4000

Push size (N)

C
os

t

Fig. 3. Total cost comparison given the robot followed the proposed controller
(red open circles) and given the robot followed an optimal trajectory (blue
dots). Pushes are applied at the middle of the torso (0.4 meters above the hip)
and the robot is initialized upright with zero velocity.



With the robot started standing upright with zero velocity,
we compare the total costs given the robot followed the
proposed controller and followed an optimal trajectory under
different pushes. As shown in Fig. 3, they are close to each
other if there are optimal trajectories stored in the library for
similar pushes. Otherwise, the performance of the proposed
controller is sub-optimal. However, the performance degrada-
tion is bounded because trajectories are stored in the library
according to the performance.

In the following simulations,θa, θh, θ̇a, and θ̇h denote the
true values of ankle angle, hip angle, ankle angular velocity,
and hip angular velocity. Their estimates are denoted by

θ̂a, θ̂h, ˆ̇
θa, and ˆ̇

θh. τa and τh are applied torques at the
ankle joint and the hip joint. The elements of the closest
state and its corresponding controls found in the trajectory
library are denoted as̄θa, θ̄h, ¯̇

θa, ¯̇
θh, τ̄a, and τ̄h. For push

and state estimation, diag(0.012, 0.012, 0.012, 0.012, 1, 0.012)
and diag(0.012, 0.012, 0.012, 0.012) are used forS and T,
respectively.

A simulation result is shown in Fig. 4. In this simulation, a
short push of100 Newtons lasted for0.5 seconds is applied at
the middle of the torso, which is about1.2 meters above the
ground. The robot leans forward and returns to upright afterthe
push, similar to the ’hip’ strategy used by humans [8]. Another
simulation result is shown in Fig. 5. In this simulation, a
constant push of70 Newtons is applied at the same place. The
robot leans against the push to use the gravity to compensate
for the push.

The robustness of the proposed controller is tested with a
sequence of random pushes. The test push size sequence is
30, 70, 90, and 10 Newtons. Trajectories for constant pushes
of 35, 70, 85, and 10 Newtons at corresponding locations are
used. As shown in Figs. 6, 7, 8, and 9, for pushes of sizes
and locations not in the library and changing with time, the
simulated robot can still keep balance.

We compared the proposed controller with a gain schedul-
ing controller, in which the system is modeled as a two-
link inverted pendulum, linearized about the desired states,

Fig. 4. Our simulated robot responding to a short push at the middle of the
torso of 100 Newtons lasting for 0.5 seconds (the configuration of the robot
is drawn every0.5 seconds).

Fig. 5. Our simulated robot responding to a constant push at the middle of
the torso of 70 Newtons (the configuration of the robot is drawn every0.5
seconds).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Time (s)

Jo
in

t a
ng

le
 (

r)

 

 

θa

θh

θ̂a

θ̂h

θ̄a

θ̄h

Fig. 6. Joint angles for a random push sequence.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

Jo
in

t v
el

oc
ity

 (
r/

s)
 

 

θ̇a

θ̇h

ˆ̇
θa

ˆ̇
θh

¯̇
θa

¯̇
θh

Fig. 7. Joint velocities for a random push sequence.

and linear quadratic regulators are designed using the same
optimization criterion (17). According to the estimates ofthe
push size and the push location, an appropriate linear quadratic
regulator is used. This gain scheduling controller falls down for
constant forward pushes at the middle of the torso of the robot
of larger than 64 Newtons. In contrast, the proposed controller
is able to handle up to 74 Newtons. The total costs for the
gain scheduling controller are 2350, 1428, and 324 for constant
pushes of 60, 55, and 50 Newtons. The corresponding costs for
the proposed controller are 779, 369, and 247. The proposed
controller performs better than the gain scheduling controller

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−140

−120

−100

−80

−60

−40

−20

0

20

40

60

Time (s)

Jo
in

t t
or

qu
e 

(N
−

m
)

 

 

τa

τh

τ̄a

τ̄h

Fig. 8. Joint torques for a random push sequence.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−50

0

50

100

Time (s)

P
us

h 
si

ze
 (

N
)

 

 

True value
Estimate

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

Time (s)

P
us

h 
lo

ca
tio

n
on

 th
e 

to
rs

o 
(m

)

 

 

True value
Estimate

Fig. 9. Push size and location estimates for a random push sequence.

on the nonlinear robot simulation in terms of handing larger
pushes and lower cost.

B. Experiment

The proposed standing balance controller was also tested
on the Sarcos humanoid robot. Hydraulic actuators and load
sensors are used to control the torque of each joint [22]. The
following measurements are used during experiments: joint
angles measured by potentiometers; the ground reaction forces
measured by a force platform on which it stands; the push size
measured by the force sensor at the end of the pushing device;
and the push location measured by hand. All joints have stiff
PD controllers except the two ankle roll joints, the two ankle
pitch joints, and the two hip pitch joints. The two ankle roll
joints have PD controllers of low gains to keep the feet from
rolling and flat on the ground. The legs are coordinated to
make the robot a planar two-link inverted pendulum:

τa,l = τa/2 + Ka
p (θ̂a − θa,l) (19)

τh,l = τh/2 + Kh
p (θ̂h − θh,l) (20)

τa,r = τa/2 + Ka
p (θ̂a − θa,r) (21)

τh,r = τh/2 + Kh
p (θ̂h − θh,r) (22)

where τa,l, τh,l, τa,r, and τh,r are the actuation torques of
the ankle pitch joint and the hip pitch joint of the left leg
and the right leg, respectively.θa,l, θh,l, θa,r, andθh,r are the
angle measurements of these joints.τa andτh are the command
torques of the ankle joint and the hip joint given by (13).θ̂a

and θ̂h are its angle estimates.Kh
p and Ka

p are the position
gains for leg coordination.

In the following experiments, we apply quickly changing
and slowly changing pushes at the middle of the torso, which
is 1.2 meters above the ground and 0.4 meters above the hip,
in both the forward and the backward directions. Example
experiment video frames are shown in Fig. 10. The push sizes
and the responding joint angles and joint torques are shown
in Fig. 11. The measured and estimated push size and push
location are shown in Fig. 12. For both quickly changing and
slowly changing pushes, the robot can keep balance using the
proposed controller.

Fig. 10. Our robot responding to a continuous push while standing (video
frames are shown every half second).

0 1 2 3 4 5 6 7 8 9
−100

0

100

p
(N

)

0 1 2 3 4 5 6 7 8 9
−0.2

0

0.2

θ a
(r

)

0 1 2 3 4 5 6 7 8 9
−0.4
−0.2

0
0.2

θ h
(r

)

0 1 2 3 4 5 6 7 8 9

−100

−50

0

50

τ a
(N

-m
)

0 1 2 3 4 5 6 7 8 9
−100

0

100

τ h
(N

-m
)

Time (s)

Fig. 11. Our robot responding to pushes while standing. Three pushes are
in the forward direction (positive forces) and a similar range of pushes are in
the backward direction.

To check our implementation, the measured pushes are
given to a simulation, which is compared with the experiments.
The corresponding joint angles, joint velocities, and joint
torques are shown in Fig. 13. The normalized ground reaction
forces are shown in Fig. 14. It is shown that the experimental
results match those of our simulation. The constraints on the
ground reaction forces are satisfied (as shown in Fig. 14) and
the feet remain flat on the ground during the experiment (as
shown in Fig. 10).

V. CONCLUSION AND FUTURE WORK

In this paper, we use a trajectory library to synthesize a
task-level controller for constrained nonlinear systems.We use
a parametric trajectory optimization method to generate initial
trajectories for Differential Dynamic Programming, whichfur-
ther refines these trajectories and generates local controllers.



32 34 36 38 40 42 44
−50

0

50

100

150
P

us
h 

si
ze

 (
N

)

 

 

Measurement
Estimate

(a)

32 34 36 38 40 42 44
0

0.2

0.4

0.6

0.8

P
us

h 
lo

ca
tin

on
 th

e 
to

rs
o 

(m
)

 

 

Measurement
Estimate

(b)

Fig. 12. a) Push size estimation b) Push location estimation

34 35 36 37 38 39 40 41 42 43 44 45
−0.4

−0.2

0

0.2

0.4

Jo
in

t a
ng

le
 (

r)

 

 
Exp θa Exp θh Sim θa Sim θh

34 35 36 37 38 39 40 41 42 43 44 45
−0.4

−0.2

0

0.2

0.4

Jo
in

t v
el

oc
ity

 (
r/

s)

 

 
Exp θ̇a Exp θ̇h Sim θ̇a Sim θ̇h

34 35 36 37 38 39 40 41 42 43 44 45
−100

−50

0

50

Time (s)

Jo
in

t t
or

qu
e 

(N
−

m
)

 

 

Exp τa Exp τh Sim τa Sim τh

Fig. 13. Joint angles, joint velocities, and joint torques.The blue lines are
of the ankle pitch joint and the red lines are of the hip pitch joint. The solid
lines are the measurements of the real robot and the dashed lines are those of
the simulated robot.

We force the adjacent trajectories to be consistent, which
enables us to synthesize a more global controller from these
local models. The optimal trajectories and local models are
stored based on the simulated performance of the controller,
which keeps the resultant library a reasonable size and also
satisfies the performance requirements.

In our future work, we will extend our model to include a
full 3D robot and use arms and knees. We will also extend the
proposed method to periodic tasks like biped walking control,
in which there are cyclic trajectories instead of desired states.

ACKNOWLEDGMENT

This material is based upon work supported by National
Natural Science Foundation of China Key Project (Grant No.
60935001).

REFERENCES

[1] A. Goswami, “Postural stability of biped robots and the foot-rotation
indicator (FRI) point,” Int. J. Rob. Res., vol. 18, no. 6, pp. 523–533,
1999.

34 35 36 37 38 39 40 41 42 43 44 45
−0.15

−0.1

−0.05

0

0.05

f x
/
f

z

Time (s)

 

 

Experiment
Simulation

34 35 36 37 38 39 40 41 42 43 44 45

0

0.05

0.1

0.15

−
τ a

/
f

z
(m

)

 

 

Experiment
Simulation

Fig. 14. The normalized ground reaction forces. The solid lines are those of
the real robot, while the dashed lines are those of the simulated robot. The
foot support region is(−0.04, 0.16) meters.

[2] H. Hemami and P. Camana, “Nonlinear feedback in simple locomotion
systems,”IEEE Trans. Autom. Contr., vol. 21, no. 6, pp. 855 – 860,
1976.

[3] J. Golliday, C. and H. Hemami, “Postural stability of thetwo-degree-of-
freedom biped by general linear feedback,”IEEE Trans. Autom. Contr.,
vol. 21, no. 1, pp. 74 – 79, 1976.

[4] B. Stephens, “Humanoid push recovery,” inProc. IEEE-RAS Int. Conf.
Humanoid Robots, Pittsburgh, PA, US, 2007.

[5] ——, “Integral control of humanoid balance,” inProc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2007, pp. 4020–4027.

[6] Y. Abe, M. da Silva, and J. Popović, “Multiobjective control with fric-
tion contacts,” inProc. ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. San Diego, California: Eurographics Association,
2007, pp. 249 – 258.

[7] A. Macchietto, V. Zordan, and C. R. Shelton, “Momentum control for
balance,”ACM Trans. Graph., vol. 28, no. 3, pp. 1–8, 2009.

[8] A. Kuo, “An optimal control model for analyzing human postural
balance,”IEEE Trans. Biomed. Eng., vol. 42, no. 1, pp. 87–101, 1995.

[9] C. G. Atkeson and B. Stephens, “Multiple balance strategies from one
optimization criterion,” inProc. IEEE-RAS Int. Conf. Humanoid Robots,
Pittsburgh, PA, US, 2007.

[10] R. Bellman,Dynamic Programming. Dover Publications, 2003.
[11] P. Dyer and S. R. McReynolds,The Computation and Theory of Optimal

Control. Academic Press, 1970.
[12] D. Jacobson and D. Mayne,Differential Dynamic Programming. New

York, NY, US: Elsevier, 1970.
[13] J. T. Betts,Practical Methods for Optimal Control Using Nonlinear

Programming. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2001.

[14] C. Liu and C. G. Atkeson, “Standing balance control using a trajectory
library,” in Proc. Int. Conf. Intell. Robots Syst., St. Louis, 2009, pp.
3031–3036.

[15] C. G. Atkeson, “Using local trajectory optimizers to speed up global
optimization in dynamic programming,” inAdvances in Neural Infor-
mation Processing Systems, J. D. Cowan, G. Tesauro, and J. Alspector,
Eds., vol. 6. Morgan Kaufmann Publishers, Inc., 1994, pp. 663–670.

[16] C. G. Atkeson and J. Morimoto, “Nonparametric representation of
policies and value functions: a trajectory-based approach,” in Advances
in Neural Information Processing Systems, pp. 1643–1650, 2003.

[17] Y. Tassa, T. Erez, and W. Smart, “Receding horizon differential dynamic
programming,” inAdvances in Neural Information Processing Systems,
vol. 20, pp. 1465–1472, 2008.

[18] R. Tedrake, “LQR-Trees: Feedback motion planning on sparse random-
ized trees,” inProc. the Robotics: Science and Systems, 2009, p. 8.

[19] P. B. Wieber and C. Chevallereau, “Online adaptation ofreference tra-
jectories for the control of walking systems,”Robotics and Autonomous
Systems, vol. 54, no. 7, pp. 559–566, 2006.

[20] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm
for large-scale constrained optimization,”SIAM Journal on Optimization,
vol. 12, pp. 979–1006, 1997.

[21] D. P. Bertsekas,Dynamic Programming and Optimal Control. Athena
Scientific, 1995.

[22] D. C. Bentivegna, C. G. Atkeson, and J. Y. Kim, “Compliant control of



a hydraulic humanoid joint,” inProc. IEEE-RAS Int. Conf. Humanoid
Robots, 2007.


